lings were pale-green and when self-pollinated these plants gave ears with all pale kernels.

New designations have been assigned to these alleles and they have been placed in the main collection. Stocks with this same phenotype that were found to complement *w*3 will be tested for allelism with other stocks linked to pale endosperm.

Previous designation	allelism test	New designation	MGCSC: stock
	with w3		number
5902D w-vp*-84-5020-4	3 positive	w3-84-5020-4	2111
5902F pale-y*-84-5032-21	3 positive	w3-84-5032-21	211J
5903G pale-y-vp*-85-3385-34	2 positive	w3-85-3385-34	211K
5903J y-vp*-85-3572-30	3 positive	w3-85-3572-30	211L
5904D vp*-86-1407-15	3 positive	w3-86-1407-15	211M
5905L y-vp*-88-89-3563-33	3 positive	w3-88-89-3563-33	211N
5906P y-vp*-73-2656	3 positive	w3-73-2656	2110
5908H vp*-8111	5 positive	w3-8111	211P
5909L y-vp*-84-13	3 positive	w3-84-13	211Q
5910H pale-y*-84-5082-33	6 positive	w3-84-5082-33	212E
5910L pale-y*-85-3006-30	3 positive	w3-85-3006-30	212F
5910N pale-y*-85-3010-40	3 positive	w3-85-3010-40	212G
5911C /w*-85-3076-28	2 positive	w3-85-3076-28	212H
5911D pale-y*-85-3087-29	2 positive	w3-85-3087-29	2121
5911H /w*-86-87-1828-7	3 positive	w3-86-87-1828-7	212J
59110 pale-y*-90-3220-1	3 positive	w3-90-3220-1	212K
5911P pale-y*-90-3220-26	3 positive	w3-90-3220-26	212L
5911Q /w*-89-90-3609-5	3 positive	w3-89-90-3609-5	212M
5912I y-pg*-85-3044-34	2 positive	w3-85-3044-34	212N
5912N y-pg*-86-87-1723-27	3 positive	w3-86-87-1723-27	2120
6109G y-I*-8910 Briggs	3 positive	w3-8910	212P

Mapping data for *enr* factors on chromosome 2 --Stinard, PS

Dominant alleles at the *enr* (*Enhancement of r1*) loci intensify aleurone color conferred by certain pale and near-colorless *r1* haplotypes (Stinard, Kermicle, and Sachs 2009, J. Hered., in press. Electronic version doi: 10.1093/jhered/esn091 http://jhered.oxfordjournals.org/cgi/content/full/esn091). Two *enr* loci, *enr1* and *enr2*, are linked to each other and map to chromosome 2. A third locus, *enr3*, is not linked to the other two.

We report four point linkage data for the *enr1 enr2* combinations *enr1-m594 Enr2-6117a* and *enr1-m694 Enr2-694* with respect to *fl1* and *v4* (Tables 1 and 2) and three point linkage data for *Enr1-628* with respect to *fl1* and *v4* (Table 3). We also report three point linkage data for the partially characterized *enr* factors *Enr*-459A* and *Enr*-459B* (Stinard, MNL 81:33-35, 2007) with respect to *fl1* and *v4* (Tables 4 and 5).

The linkage testcrosses were performed as indicated in the tables. All lines were homozygous for the pale r1 reporter haplo-type R1-r(Venezuela559-PI302355). Kernels from the testcross ears were separated into purple (Enr) vs. pale (enr) vs. sectored (enr-m) as appropriate, and starchy (FI) vs. floury (fI) classes, planted in a cold sand bench, and the resulting seedlings scored for green (V) vs. virescent (v). Linkage values were calculated according to Coe (Pp. 189-197 in Maize Handbook, M. Freeling and V. Walbot eds., New York: Springer-Verlag, 1994). The segregation of two enhancers (*enr1-m* and *Enr2*) in the four point linkage tests (Tables 1 and 2) presented a special problem in that the presence of the *Enr2* allele prevented the scoring for *enr1* vs. *enr1-m* in the purple kernel classes. Therefore, four point linkage data were calculated from *enr2* classes only, and three point linkage data for *fI1 enr2 v4* were calculated from total data.

50

Table 1. Four point linkage data for fl1 Enr2-6117a v4 enr1-m594.

Testcross: [FI1 Enr2-6117a V4 enr1-m594 X fl1 enr2 v4 enr1] X fl1 enr2 v4 enr

Testcross: [FIT En	rz-6117a v4 enr1-m594 X f11 enrz v4	enr 1] X 111 enrz	v4 enr i
Region	Phenotype	No.	enr2 class
0	fl enr2 v enr1	550	550
0; 3	FI Enr2 V; enr1 or enr1-m	663	
1; 1 + 3	fl Enr2 V; enr1 or enr1-m	63	
1	FI enr2 v enr1	54	54
2	fl enr2 V enr1-m	74	74
2; 2 + 3	FI Enr2 v; enr1 or enr1-m	72	
3	fl enr2 v enr1-m	71	71
1 + 2; 1 + 2 + 3	fl Enr2 v; enr1 or enr1-m	5	
1 + 2	FI enr2 V enr1-m	5	5
1+3	FI enr2 v enr1-m	6	6
2 + 3	fl enr2 V enr1	4	4
1 + 2 + 3	FI enr2 V enr1	0	0
Total (n)		1567	764
enr2 data:	fl1 - enr2 = 8.5 +/- 1.1 cM		
	<i>enr2</i> - <i>v4</i> = 10.9 +/- 1.1 cM		
T	v4 - enr1 = 10.6 +/- 1.1 cM		
i otal data:	1/1 - enr2 = 8.5 +/- U./ CM		
	enr2 - v4 = 10.2 +/- 0.8 cM		

Table 2. Four point linkage data for fl1 Enr2-694 v4 enr1-m694.

Region	Phenotype	No.	enr2 class	
0	fl enr2 v enr1	310	310	
0; 3	FI Enr2 V; enr1 or enr1-m	330		
1; 1 + 3	fl Enr2 V; enr1 or enr1-m	34		
1	FI enr2 v enr1	28	28	
2	fl opr2 \/ opr1 m	20	20	
2:2+3	FI Enr2 v: enr1 or enr1-m	37	32	
	, _ _, _ , _ _, _ , _ , _ , _ , _ , _ , _ _, _ , _ _, _ , _ _, _ _, _ _, _ , _ _, _ , _ _, _			
3	fl enr2 v enr1-m	35	35	
4 - 0 - 4 - 0 - 0		40		
1+2,1+2+3	II EIIIZ V, eIII I OI eIII I-III	13	10	
1+2	FI enr2 V enr1-m	13	13	
1 + 3	Fl enr2 v enr1-m	1	1	
2 + 3	fl enr2 V enr1	6	6	
1+2+3	FLenr2 Venr1	5	5	
. 2 0		•		
Total (n)		844	430	
enr2 data:	fl1 - enr2 = 10.9 +/- 1.5 cM			
	<i>enr2</i> - <i>v4</i> = 13.0 +/- 1.6 cM			
	v4 - enr1 = 10.9 +/- 1.5 cM			
Total data:	fl1 - enr2 = 11.1 +/- 1.1 cM			
	enr2 - v4 = 12 6 +/- 1 1 cM			

The four point linkage data presented in Tables 1 and 2 establish the gene order *fl1 enr2 v4 enr1* and the linkage values (*fl1* – 8.5 - enr2 - 10.2 - v4 - 10.6 - enr1 and *fl1* – 11.1 - enr2 - 12.6 - v4 - 10.9 - enr1) are fairly consistent with each other and with previously reported data (*fl1* – 6.2 - enr2 - 7.8 - v4 - 10.3 - enr1; Stinard, Kermicle, and Sachs, 2009), although the *fl1* – v4 interval is extended in the present data (18.7 cM and 23.7 cM vs. 14.0 cM reported in Stinard, Kermicle, and Sachs). The v4 - enr1 values (10.6 cM, 10.9 cM, and 10.3 cM) are remarkably similar. Differences in the *fl1* – v4 interval could be due to the fact that the *enr1* and *enr2* alleles used in the two different tests are from different sources and genetic backgrounds (although they have been partially introgressed into W22). It may also be significant that *fl1* and

Table 3. Three point linkage data for fl1 v4 Enr1-628.

Region	Phenotype	No.	Totals
0	FI V Enr	425	
	fl v enr	465	890
1	Fl v enr	45	
	fl V Enr	71	116
2	FI V enr	54	
	fl v Enr	51	105
1+2	Fl v Enr	3	
	fl V enr	8	11
Totals			1122
f 1 - v4 = 11.3 + / -	0.9 cM		

Testcross: [FI1 V4 Enr1-628 X fl1 v4 enr1] X fl1 v4 enr1

v4 – enr1 = 10.3 +/- 0.9 cM

Table 4. Three point linkage data for fl1 v4 Enr*-459A.

Testcross:	[FI1 V4 Enr*-459A X fl1 v4 enr] X fl1 v4	enr
		· · · ·
Dogion	Phonotypo	No

Region	тпепотуре	NU.	101813
0	FI V Enr	734	
	fl v enr	768	1502
1	Fl v enr	121	
	fl V Enr	125	246
2	FI V enr	108	
	fl v Enr	88	196
1+2	Fl v Enr	13	
	fl V enr	6	19
Totals			1963
f/1 - v4 = 13.5 + -0.8 c	N		

Totala

 $v4 - enr^* = 11.0 + -0.7$ cM

Table 5. Three point linkage data for fl1 Enr*-459B v4.

Testcross: [FI1 Enr*-459B V4 X fl1 enr v4] X fl1 enr v4

Region	Phenotype	No.	Totals
0	FI Enr V	341	
	fl enr v	376	717
1	Fl enr v	24	
	fl Enr V	19	43
2	FI Enr v	28	
	fl enr V	22	50
1+2	FI enr V	3	
	fl Enr v	4	7
Totals			817
$fl1 - enr^* = 6.1 + - 0.8 c$	M		

 $enr^* - v4 = 7.0 + -0.9 \text{ cM}$

v4 flank the centromere of chromosome 2; it is not presently known on which chromosome arm *enr*² resides.

The three point linkage data presented in Table 3 establish the following relationship: f/1 - 11.3 - v4 - 10.3 - enr1. The f/1 - v4 interval is shorter in this test, but the v4 - enr1 interval is similar to other reported data.

For the partially characterized *enr* factors *Enr*-459A* and *Enr*-459B*, the following linkage order and distances (in centiMorgans) were established: f/1 - 13.5 - v4 - 11.0 - Enr*-459A (Table 4); and f/1 - 6.1 - Enr*-459B - 7.0 - v4 (Table 5). The f/1 - v4 distances established by these tests (13.5 cM and 13.1 cM, respectively) agree with each other and are close to that reported on the 1993 genetic map of chromosome 2 (15 cM; Neuffer et al., Mutants of Maize, Cold Spring Harbor Laboratory Press, 1997).

The gene order established by these two tests taken together, *fl1* $Enr^*-459B v4 Enr^*-459A$, as well as the map distances, are consistent with those of *enr1* and *enr2* (Stinard, Kermicle, and Sachs 2009; and this report). It is likely that Enr^*-459A and Enr^*-459B are alleles of *enr1* and *enr2*, respectively. Direct mapping tests of Enr^*-459A with *enr1* and *Enr^*-459B* with *enr2* are in progress.

Two point linkage data for 3L mutants w*-5787 and yel*-8630 --Stinard, PS; Jackson, JD

We report F2 linkage data for the 3L seedling lethal mutants w^* -5787 and yel^* -8630 with respect to wx1-marked A-A translocations. Both mutants are uncovered by TB-3La and therefore lo-

tions. Both mutants are uncovered by TB-3La and therefore located distal to the 3L breakpoint (3L.10) of TB-3La. Plants heterozygous for w^* -5787 were crossed to a line homozygous for wx1T3-9c (breakpoints 3L.09; 9L.12). F1 kernels were planted in our summer nursery and the resulting plants self-pollinated. F2 kernels from the selfed ears were separated into starchy (Wx) and waxy (wx) classes, planted in a sand bench, and the resulting seedlings scored for green (W) vs. albino (w). Roughly half the ears segregated for albino seedlings and the data from those ears were pooled and are summarized in Table 1. A similar crossing scheme was used to map *yel*-8630* with respect to *wx1* T3-9c and *wx1* T3-9(8562) (breakpoints 3L.65; 9L.22). Linkage distances were calculated according to the product method (Immer, Genetics 15:81-98, 1930) and are summarized in Table 1.

Table 1. F2 linkage data for w*-5787 with respect to wx1 T3-9c and ye/*-8630 with respect to wx1 T3-9c and wx1 T3-9(8562).

mutant	translocation	Wx W	Wx w	wx W	WX W
w*-5787	wx1 T3-9c	1130	464	390	43
yel*-8630	wx1 T3-9c	1076	497	463	3
yel*-8630	wx1 T3-9(8562)	407	169	105	26

Map distance w*-5787 - wx1 T3-9c = 32.1 +/- 2.0 cM Map distance ye/*-8630 - wx1 T3-9c = 8.3 +/- 2.2 cM

Map distance ye/=8630 - wx713-9(8562) = 42.7 +/- 3.0 cM

Linkage of wx1 with chromosome 3 markers in crossings involving 3-9 translocations is dependent upon the linkage of wx1and the chromosome 3 markers with the 3-9 cytological breakpoints. The only data that are directly comparable are those involving the same translocation, in this case T3-9c. We conclude that yel^*-8630 is located relatively close, but distal to the 3L.09 breakpoint (separation between yel^*-8630 and wx1 of 8.3 cM), and that w^*-5787 is located farther out on the long arm of chromosome 3 (separation between w^*-5787 and wx1 of 32.1 cM).

d4 is allelic to d1

--Stinard, PS

The Maize Genetics Stock Center recently received a stock of the andromonoecious dwarf plant mutant d4 from Ron Phillips of the University of Minnesota. d4 was first reported by Suttle (Cornell Univ. Ph.D. Dissertation, 1924) and appears in Emerson, Beadle, and Fraser's (1935) gene list, but no further information appears in the literature. We figured that it was found to be allelic to some other better characterized dwarf mutant and disappeared from the literature for that reason, but could find no report of allelism. We conducted tests of allelism of d4 with the andromonoecious dwarfs d1, d3, d5, and an1 and found it to be allelic to d1. We renamed the mutant allele we received from Ron Phillips d1-4.