levels of constitutive resistance in the laboratory were significantly related to the amount of damage that was sustained by lines in the field, as shown in Figure 3 (Likelihood ratio test: deviance=1.267, df=7, P=0.033).

Antibiosis Resistance (Herbivore Growth Rate)

Figure 3. The relationship between average damage index values and average antibiosis resistance (as measured by herbivore growth rates) for the chosen subset of nine lines. Antibiosis resistance demonstrated a significant linear relationship with observed damage levels according to a likelihood ratio test (deviance=1.267, df=7, P=0.033).

The concordance between the patterns of resistance observed in the field versus laboratory suggests that constitutive antibiosis resistance expressed by the lines is important for deterring leaf damage. To the extent that this relationship holds up, these types of herbivore growth rate bioassays may provide an efficient method to pre-screen germplasm for resistance prior to more extensive field trials. Despite the fact that our observations of damage in the field were predicted by laboratory measures of resistance, follow-up studies will still be needed in order to confirm whether levels of resistance in these lines are stably expressed across seasons, locations, and developmental stages. This study confirms our suspicion that these maize diversity lines could be used to learn more about the genetic basis of herbivore resistance and the effect of genetic variation in plant defense on ecological dynamics.

> URBANA, ILLINOIS Maize Genetics Cooperation • Stock Center

Allelism testing of miscellaneous stocks in the Maize COOP phenotype only collection

--Jackson, JD; Harper, C

This report summarizes allele testing of miscellaneous stocks characterized by phenotype only in the Maize Genetics COOP Stock Center collection. Crosses were made between known heterozygotes if possible. Ears were shelled and planted in sand benches to score seedlings for the appropriate phenotypes. Plants from the lazy crosses were scored in the field at maturity. Proposed new designations have been assigned to these alleles. These stocks have been increased and placed on our stocklist. It is expected that with further sorting and allelism testing of mutations characterized by phenotype only, additional alleles of characterized mutants will be discovered and placed in the main collection.

POSITIVE TESTS:				
previous designation	allelism test with spt1		new designation	MGCSC: stock number
spt*-92-3239-53	positive: (+ / spt1-N464) x (+	- / spt*)	spt1-92-3239-53	226J
previous designation	allelism test with oro1		new designation	MGCSC: stock number
oro*-85-3087-3	positive: (+ / oro1-6474) x (+	/ oro*)	oro1-85-3087-3	616C
oro*-88-89-3550-32	positive: (+ / oro1-6474) x (+	/ oro*)	oro1-88-89-3550- 32	616D
previous designation	allelism test with la1	new des	signation	MGCSC: stock number
la*-05HI-RnjxW22GN-333	positive: (+//a1) x la*	la1-05H	II-RnjxW22GN-333	406E
la*-MTM4659	positive: (+/la1) x la*	la1-MTI	M4659	406F

New alleles of *chlorophyll1* found in lemon white endosperm stocks in the Maize COOP phenotype-only collection

--Jackson, JD

This report summarizes allele testing of lemon-white endosperm stocks characterized only by phenotype in the Maize Genetics COOP Stock Center collection. Here pale kernels linked to pale-green or albino seedlings characterized all stocks. Many had previously given negative results in tests with *vp*9, *w3* and *y9*. The *cl1 Clm1-3* stock used in crosses here carries a dominant modifier of *cl1* that allows for viable green plants, making crosses with a homozygous stock possible. Crosses were made as follows: $[+/lw^*]@ X cl1 Clm1-3 \text{ or } +/l+/lw^* X cl1 Clm1-3$. Ears were scored for the segregation of pale yellow kernels.

New designations have been assigned to these alleles and they have been placed in the main collection. Stocks with this same phenotype that were found to complement *cl1 Clm3* will be tested for allelism with other stocks linked to pale endosperm.

Previous designation	allelism test with w3	New designation	MGCS stock number
5705F pale- y*-87-88-2679-1	4 positive	cl1-87-88-2679-1	306H
5908Q y-vp*-1982-1	3 positive	cl1-1982-1	3061
5910M pale-y*-85-3007-40	3 positive	cl1-85-3007-40	306J
5912P /w-y-pg*-1998-4	5 positive	cl1-1998-4	306K

New alleles of *white3* found in viviparous stocks in the Maize COOP phenotype only collection

--Jackson, JD

This report summarizes allele testing of various viviparous and lemon-white endosperm stocks characterized only by phenotype in the Maize Genetics COOP Stock Center collection. Here pale kernels linked to pale or albino seedlings characterized all stocks. Many had previously given negative results in tests with vp9 and y9. The w3-y11 stock used in crosses here is homozygous viable. Crosses were made as follows: $[+/vp^*]@X w3-y11$ and $+//+/vp^*X w3-y11$. Ears were scored for the segregation of pale yellow kernels. In most cases, pale-yellow kernels were selected from positive allele test ears and planted in the field for observation. Seed-

lings were pale-green and when self-pollinated these plants gave ears with all pale kernels.

New designations have been assigned to these alleles and they have been placed in the main collection. Stocks with this same phenotype that were found to complement *w*3 will be tested for allelism with other stocks linked to pale endosperm.

Previous designation	allelism test	New designation	MGCSC: stock
	with w3		number
5902D w-vp*-84-5020-4	3 positive	w3-84-5020-4	2111
5902F pale-y*-84-5032-21	3 positive	w3-84-5032-21	211J
5903G pale-y-vp*-85-3385-34	2 positive	w3-85-3385-34	211K
5903J y-vp*-85-3572-30	3 positive	w3-85-3572-30	211L
5904D vp*-86-1407-15	3 positive	w3-86-1407-15	211M
5905L y-vp*-88-89-3563-33	3 positive	w3-88-89-3563-33	211N
5906P y-vp*-73-2656	3 positive	w3-73-2656	2110
5908H vp*-8111	5 positive	w3-8111	211P
5909L y-vp*-84-13	3 positive	w3-84-13	211Q
5910H pale-y*-84-5082-33	6 positive	w3-84-5082-33	212E
5910L pale-y*-85-3006-30	3 positive	w3-85-3006-30	212F
5910N pale-y*-85-3010-40	3 positive	w3-85-3010-40	212G
5911C /w*-85-3076-28	2 positive	w3-85-3076-28	212H
5911D pale-y*-85-3087-29	2 positive	w3-85-3087-29	2121
5911H /w*-86-87-1828-7	3 positive	w3-86-87-1828-7	212J
59110 pale-y*-90-3220-1	3 positive	w3-90-3220-1	212K
5911P pale-y*-90-3220-26	3 positive	w3-90-3220-26	212L
5911Q /w*-89-90-3609-5	3 positive	w3-89-90-3609-5	212M
5912I y-pg*-85-3044-34	2 positive	w3-85-3044-34	212N
5912N y-pg*-86-87-1723-27	3 positive	w3-86-87-1723-27	2120
6109G y-I*-8910 Briggs	3 positive	w3-8910	212P

Mapping data for *enr* factors on chromosome 2 --Stinard, PS

Dominant alleles at the *enr* (*Enhancement of r1*) loci intensify aleurone color conferred by certain pale and near-colorless *r1* haplotypes (Stinard, Kermicle, and Sachs 2009, J. Hered., in press. Electronic version doi: 10.1093/jhered/esn091 http://jhered.oxfordjournals.org/cgi/content/full/esn091). Two *enr* loci, *enr1* and *enr2*, are linked to each other and map to chromosome 2. A third locus, *enr3*, is not linked to the other two.

We report four point linkage data for the *enr1 enr2* combinations *enr1-m594 Enr2-6117a* and *enr1-m694 Enr2-694* with respect to *fl1* and *v4* (Tables 1 and 2) and three point linkage data for *Enr1-628* with respect to *fl1* and *v4* (Table 3). We also report three point linkage data for the partially characterized *enr* factors *Enr*-459A* and *Enr*-459B* (Stinard, MNL 81:33-35, 2007) with respect to *fl1* and *v4* (Tables 4 and 5).

The linkage testcrosses were performed as indicated in the tables. All lines were homozygous for the pale r1 reporter haplo-type R1-r(Venezuela559-PI302355). Kernels from the testcross ears were separated into purple (Enr) vs. pale (enr) vs. sectored (enr-m) as appropriate, and starchy (FI) vs. floury (fI) classes, planted in a cold sand bench, and the resulting seedlings scored for green (V) vs. virescent (v). Linkage values were calculated according to Coe (Pp. 189-197 in Maize Handbook, M. Freeling and V. Walbot eds., New York: Springer-Verlag, 1994). The segregation of two enhancers (*enr1-m* and *Enr2*) in the four point linkage tests (Tables 1 and 2) presented a special problem in that the presence of the *Enr2* allele prevented the scoring for *enr1* vs. *enr1-m* in the purple kernel classes. Therefore, four point linkage data were calculated from *enr2* classes only, and three point linkage data for *fI1 enr2 v4* were calculated from total data.

50

Table 1. Four point linkage data for fl1 Enr2-6117a v4 enr1-m594.

Testcross: [FI1 Enr2-6117a V4 enr1-m594 X fl1 enr2 v4 enr1] X fl1 enr2 v4 enr

Testcross: [FIT En	rz-6117a v4 enr1-m594 X f11 enrz v4	enr 1] X 111 enrz	v4 enr i
Region	Phenotype	No.	enr2 class
0	fl enr2 v enr1	550	550
0; 3	FI Enr2 V; enr1 or enr1-m	663	
1; 1 + 3	fl Enr2 V; enr1 or enr1-m	63	
1	FI enr2 v enr1	54	54
2	fl enr2 V enr1-m	74	74
2; 2 + 3	FI Enr2 v; enr1 or enr1-m	72	
3	fl enr2 v enr1-m	71	71
1 + 2; 1 + 2 + 3	fl Enr2 v; enr1 or enr1-m	5	
1 + 2	FI enr2 V enr1-m	5	5
1+3	FI enr2 v enr1-m	6	6
2 + 3	fl enr2 V enr1	4	4
1 + 2 + 3	FI enr2 V enr1	0	0
Total (n)		1567	764
enr2 data:	fl1 - enr2 = 8.5 +/- 1.1 cM		
	<i>enr2</i> - <i>v4</i> = 10.9 +/- 1.1 cM		
T	v4 - enr1 = 10.6 +/- 1.1 cM		
i otal data:	1/1 - enr2 = 8.5 +/- U./ CM		
	enr2 - v4 = 10.2 +/- 0.8 cM		

Table 2. Four point linkage data for fl1 Enr2-694 v4 enr1-m694.

Region	Phenotype	No.	enr2 class
0	fl enr2 v enr1	310	310
0; 3	FI Enr2 V; enr1 or enr1-m	330	
1; 1 + 3	fl Enr2 V; enr1 or enr1-m	34	
1	FI enr2 v enr1	28	28
2	fl opr2 \/ opr1 m	20	20
2:2+3	FI Enr2 v: enr1 or enr1-m	37	32
	, _ _, _ , _ _, _ , _ _, _ , _ , _ , _ , _ , _ _, _ , _ _, _ , _ , _ , _ _, _ _, _ _, _ , _ _, _ , _		
3	fl enr2 v enr1-m	35	35
4 - 0 - 4 - 0 - 0		40	
1+2,1+2+3	II EIIIZ V, eIII I OI eIII I-III	13	10
1+2	FI enr2 V enr1-m	13	13
1 + 3	Fl enr2 v enr1-m	1	1
2 + 3	fl enr2 V enr1	6	6
1+2+3	FLenr2 Venr1	5	5
. 2 0		•	
Total (n)		844	430
enr2 data:	fl1 - enr2 = 10.9 +/- 1.5 cM		
	<i>enr2</i> - <i>v4</i> = 13.0 +/- 1.6 cM		
	v4 - enr1 = 10.9 +/- 1.5 cM		
Total data:	fl1 - enr2 = 11.1 +/- 1.1 cM		
	enr2 - v4 = 12 6 +/- 1 1 cM		

The four point linkage data presented in Tables 1 and 2 establish the gene order *fl1 enr2 v4 enr1* and the linkage values (*fl1* – 8.5 - enr2 - 10.2 - v4 - 10.6 - enr1 and *fl1* – 11.1 - enr2 - 12.6 - v4 - 10.9 - enr1) are fairly consistent with each other and with previously reported data (*fl1* – 6.2 - enr2 - 7.8 - v4 - 10.3 - enr1; Stinard, Kermicle, and Sachs, 2009), although the *fl1* – v4 interval is extended in the present data (18.7 cM and 23.7 cM vs. 14.0 cM reported in Stinard, Kermicle, and Sachs). The v4 - enr1 values (10.6 cM, 10.9 cM, and 10.3 cM) are remarkably similar. Differences in the *fl1* – v4 interval could be due to the fact that the *enr1* and *enr2* alleles used in the two different tests are from different sources and genetic backgrounds (although they have been partially introgressed into W22). It may also be significant that *fl1* and