Identification and characterizations of P1-wr epialleles in maize that show a gain in pericarp function

Robbins, ML; Peterson, TA; Chopra, S

Homologous recombination mechanisms at p1 have been proposed to be involved in the allelic diversity at p1. For example, the P1-wr allele has six tandemly-repeated gene copies, and is thought to be derived by gene duplication events from an ancestral allele. However, the P1-wr may be refractory to recombination since ears with pericarp pigmentation sectors are not present in P1-wr X p1-wr screens (Brink, Annu. Rev. Genet. 7:129-152, 1973; Chopra et al., Mol. Gen. Genet. 260:372-380, 1998). Toward this objective, a similar screen was performed to identify recombinant events at P1-wr [W23]. In place of the wild type P1-rr allele, a loss of function mutant allele called p1-wr-10:443-3 (Athma and Peterson, Genetics 128:163-173, 1991) was used. This approach allows for the easy identification of hypothetical P1-wr/1 p1-wr-10:443-3 recombinants exhibiting a gain of pericarp pigmentation.

However, we show by PCR and Southern analysis that recombination did not occur between these two alleles. Nevertheless, three heritable gains of pericarp pigmentation epialleles were identified and are characterized herein.

Genetic screen for gain of pericarp pigmentation. An intragenic transposition of Ac from P1-ovov-1114 produced the P1-vv-83934 allele. The P1-vv-83934 has an 8-bp target duplication within the p1 reading frame (Athma and Peterson, 1991). The excision of Ac from the P1-vv-83934 engendered a frame shift mutant allele called p1-wr-10:443-3 (Grotewold et al., Proc. Natl. Acad. Sci. USA 88:4587-4591, 1991). The standard p1 alleles used in this study are p1-wr [4co63], P1-wr [W23], and P1-rr-4B2. The P1-rr-4B2 allele was introgressed into the W23 background by over six generations of backcrossing.

The p1-wr-10:443-3 was crossed with P1-wr [W23] and the F1 progeny plants were then crossed with p1-wr [4co63] (Figure 1).

Figure 1. Gain of pericarp pigmentation crossing scheme used to generate new P1-wr epialleles. A. Diagram showing crosses performed for a gain of pericarp pigmentation screen. This screen generated two epialleles of P1-wr [W23] called P1-wr-d1 and P1-wr-d2 (see Figure 1D). B. Pericarp and cob glume pigmentation of P1-wr-d1 and P1-wr-d2 are shown. The phenotypes of the P1-wr [W23] and p1-wr-10:443 parents that were used in this screen is also shown. (For full color, see p. 34.) Approximately 80,000 test cross ears were open-pollinated and examined for a gain of pericarp pigmentation. Two parental ears produced progeny exhibiting kernel sectors of red pericarp pigmentation. F1 kernels from the red and colorless sectors were planted and the progeny was self-pollinated. The F2 progeny plants were self-pollinated and out-crossed to p1-wr [4co63]. Following this, there were two additional generations of self-pollination. During each generation, the pigmentation phenotype was examined on both the pericarp and cob for each allele.

DNA gel blot analysis. Seedling genomic DNA was prepared using a modified CTAB method (Saghai-Maroo et al., Proc. Natl. Acad. Sci. USA 81:8014-8018, 1984). PCR genotyping of the genomic DNA was done with standard conditions using primers listed in Table 1. Restriction digestion was achieved by using enzymes, reagents and protocols from Promega (Madison, WI). Restricted genomic DNA was fractionated on 0.8 % agarose gels and subsequently transferred to nylon membranes. Membranes were pre-hybridized for four hours and then hybridized for 15 h at 65°C in buffer containing NaCl (1 M), SDS (1%), Tris-HCl (10 mM) and 0.25 mg/ml salmon sperm DNA (Athma and Peterson, 1991). The p1 probe fragments used include F8B, F8C, F13, and F15, and have previously been described (Chopra et al., 1998; Lechelt et al., Mol. Gen. Genet. 219:225-234, 1999; Sekhon et al., 2007). Blots were stripped of previous signal by boiling in 0.1% SDS before they were reused.

Table 1.

Please Note: Notes submitted to the Maize Genetics Cooperative Newsletter may be cited only with consent of authors.
Pigmentation patterns of the gain-of-pericarp-function alleles. The two new p1 alleles, called P1-wr-d1 and P1-wr-d2, were discovered in a phenotypic screen as red kernel sectors on P1-wr [W23]/ p1-ww:10:443 X p1-ww:4c063 pericarp (Figure 1). The red phlobaphene pigmentation on both alleles was limited to the silk attachment point and kernel gowm. In subsequent generations, the pericarp pigmentation was no longer sectored; it instead encompassed the entire ear (Figures 1 and 2). However, there were some instances of ears with mosaic sectors on the pericarp gowm (see second ear from left in Figure 2A). Variable pericarp pigmentation intensities and patterns were observed for both alleles. For example, some ears only had silk scar pigmentation, while other ears only had gowm pigmentation (Figure 2). Furthermore, some ears had very low pigmentation levels that resembled P1-wr. Since the background of the stocks containing these alleles is heterogeneous, it might be that the variability in pigmentation levels depends on the genetic constituency of modifier alleles.

Gain-of-function pericarp color/1 alleles share an identical gene structure with P1-wr [W23]. Genomic DNA of the two gain of function alleles was compared by PCR genotyping with p1-ww:10:443-3 and P1-wr [W23] (Figure 3). The RRF and RRR primer pair was used to amplify a 481 bp region in p1-ww:10:443-3 (between 6349 and 6830 of accession Z13879) that is located in exon 3 and includes the 3'UTR and some downstream sequence (Figure 3A). The RRF and RRR primer pair does not amplify the 481 bp region in p1-ww:4c063 or P1-wr [W23], but does yield another ~900 bp product that is also present in p1-ww:10:443-3. The P1-wr genomic sequence of a P1-wr [W23] (accession EF165349) does not contain the 481 bp region, whereas the origin of the ~900 bp product has only a limited homology with p1. Conversely, the WRJ and WRK primer pair amplifies a 618 bp band in P1-wr [W23] that is located in the 3'UTR and downstream sequence (Figure 3A). The WRJ and WRK primer pair does not amplify p1-ww:10:443-3 or p1-ww:4c063. The P1-wr-d1 and P1-wr-d2 alleles had an amplification pattern identical to that of P1-wr [W23] (Figure 3B). Conversely, no evidence of the presence of sequence originating from p1-ww:10:443-3 was found.
To identify gene structural differences that may have led to the gain of function in pericarp tissue we assayed P_{1}-wr-d1 and P_{1}-wr-d2 by DNA gel blot analysis (Figure 4). Seedling genomic DNA was digested with ten restriction enzymes and hybridized with different p_{1} homologous probes. This analysis revealed that P_{1}-wr-d1 and P_{1}-wr-d2 had an identical tandem-repeat gene structure with P_{1}-wr [W23] (Figure 4A and B). Moreover, when the distal enhancer region of p_{1} was examined, there were no SalI fragments that resemble P_{1}-rr (Figure 4C and D). Rather the bands (12.5 kb and 1 kb) resemble the pattern expected for P_{1}-wr. Additional results showed that there were no diagnostic p_{1}-F15 SalI fragments that resembled P_{1}-rr (Figure 4C and D). Rather the bands (12.5 kb and 1 kb) showed the pattern expected for P_{1}-wr. Collectively, these results suggest that p_{1}-ww-10:443-3 has segregated from P_{1}-wr and has not recombined with P_{1}-wr. Hence, this data suggested that the gain of gown pigmentation in P_{1}-wr-d1 and P_{1}-wr-d2 may have arisen by spontaneous small nucleotide polymorphisms or epimutations in P_{1}-wr [W23]. P_{1}-wr-d1 and P_{1}-wr-d2 are hypomethylated epialleles of P_{1}-wr [W23]. Since P_{1}-wr-d1 and P_{1}-wr-d2 had no genetic differences from P_{1}-wr [W23], we considered the possibility that epigenetic differences may have led to the gain of function in pericarp tissue. Hence, DNA gel blot analysis was used to construct a DNA methylation map comparing P_{1}-wr-d1, P_{1}-wr-d2, and P_{1}-wr [W23] (Figures 5). We detected partial hypomethylation at the distal floral organ enhancer as evidenced by the diagnostic 500 bp F15-homologous HpaI band (Chopra et al., Genetics 163:1135-1146).

Figure 4. Structural comparison of P_{1}-wr-d1 and P_{1}-wr-d2 with P_{1}-wr [W23] and P_{1}-rr-4B2. Gene structure blots were made by digesting seedling DNA with ten diagnostic restriction enzymes. Enzyme names are abbreviated as follows: D, DraI; Ba, BamHI; Sc, Scal; P, PstI; EV, EcoRV, Bg, BglII, H, HindIII; K, KpnI; Sa, SacI; EI, EcorII. Blots were hybridized with p_{1} probes corresponding with A, the distal floral organ enhancer (F15) and B, intron 2 (FRC). The blots in C and D show SalI digested DNA that has been hybridized with distal enhancer probe F15 and intron 2 probe F8C, respectively. For a diagram showing the location of these probes in P_{1}-wr [W23] refer to Figure 5. The sizes of molecular weight marker bands are indicated in kilobase pairs to the right of the blots.

Figure 5. P_{1}-wr-d1 and P_{1}-wr-d2 are hypomethylated epialleles of P_{1}-wr [W23]. A. P_{1}-wr [W23] was used as a template to construct the DNA methylation map for P_{1}-wr-d1 and P_{1}-wr-d2. The intron/exon structure of P_{1}-wr is provided on a line diagram above the methylation maps. The large grey

Please Note: Notes submitted to the Maize Genetics Cooperative Newsletter may be cited only with consent of authors.
arrow on the line diagram represents the end of a copy in the tandem array. The bent arrows indicate the location of the transcription start sites. Exons are abbreviated as E1, E2, and E3. The placement of p1 probes (grey shaded boxes) is shown immediately below the line diagram. DNA methylation maps are shown below the P1-wr [W23] gene structure. On the DNA methylation maps, black circles indicate hypermethylated sites; grey circles indicate partially-methylated sites; non shaded circles represent hypomethylated sites. B. Summary of the DNA methylation changes in P1-wr-d1 and P1-wr-d2 relative to that of P1-wr [W23]. However, the presence of high molecular weight bands such as a 7.9 kb HpaII band indicates that most copies remained hypermethylated at the distal enhancer region (Figure 5A).

At the intron 2 region of p1, we did not observe any differences using HpaII digestion; however, differences were detected using SalI (Figure 6B). Digestion with SalI in P1-wr [W23] produces a 12.6 kb band that extends the entire length of the gene. This is because two of the three SalI sites in P1-wr [W23] are hypermethylated. Interestingly, in P1-wr-d2 we detected an additional 2.1 kb band which suggested that a SalI in intron 2 (site 10,310 of P1-wr [W23] accession EF165349) was partially hypomethylated (Figure 5). This difference (2.1 kb band) was not observed in P1-wr-d1 and therefore can be used to differentiate between the two epialleles (Figure 6B).

![Figure 6](image)

Figure 6. DNA gel blot showing methylation differences between P1-wr [W23] and its derived epialleles. A. Gel blots showing HpaII digested genomic DNA hybridized with the p1 distal enhancer probe 15. B. Gel blots showing SalI digested genomic DNA hybridized with p1 exon 3 probe 13. These and other blots were used to construct the DNA methylation maps for the P1-wr-d1 and P1-wr-d2 epialleles shown in Figure 5.

Notably, several P1-wr alleles from R. A. Brink’s collection which have pericarp pigmentation confined to the kernel grown are also partially hypomethylated at this distal floral enhancer (Brink and Styles, MNL 40:149-160, 1966; Cocciolone et al., Plant J. 27:467-478, 2001). It was thus suggested that DNA hypomethylation was important for the gain of pericarp function (Cocciolone et al., 2001). However, Brink’s P1-wr alleles were collected from numerous genetic sources and therefore would likely have subtle genetic differences such as SNPs. Herein, this gain of function screen employed P1-wr [W23], and hence, the resulting alleles are likely genetically identical to P1-wr [W23]. Therefore, these results help strengthen the theory that an epimutation in P1-wr can lead to the presence of silk scar and gowm pigmentation.

Please Note: Notes submitted to the Maize Genetics Cooperative Newsletter may be cited only with consent of authors.