--Bernard C. Mikula
The L:D treatments above shift the corn plant from the vegetative to
the flowering phase of development. Plant physiologists have programmed
plant growth and development with day length since the l920's.
Fig.
5 shows the differences in plant habit (inbred W22) which resulted
from the application of the L:D treatments to seedlings. The plant on the
left was raised in constant light at 22 C until day 15 then given L:D treatments
at 22 C days 16-21. The plant on the right was raised in constant light
until day 10 at 32 C then shifted L:D conditions at 32 C from days 11-15.
Both plants look essentially alike in habit though the one from the higher
temperature was determined six days earlier. The middle plant was grown
for 10 days in constant light at 32 C then transferred to 22 C in continuous
light from days 11-15. All plants were transplanted to field conditions
at the end of their respective treatments. The developmental effects of
each of the treatments can be seen in the photographs. The plant on the
left had the fewest tassel branches. Larger numbers of tassel branches
were found on plants given higher seedling temperatures. Four to five times
as many tassel branches were found on the plants which received the higher
temperature in continuous light, of which the middle plant is a typical
representative. An average of three more nodes accounts for their being
taller with anthesis a week later. Along with these morphological changes
programmed by temperature and day length, the variation in the level of
paramutation discussed above is influenced at this same developmental period.
Paramutation provides a model system where it is possible to follow
incremental change in the expression of a single gene across generations.
Thus, environmental programming of gene expression becomes an experimental
possibility, especially since the paramutant R gene has been shown
to have an additive memory capability from generation to generation. What
molecular transducers respond to temperature and light? Where and how is
the incremental memory stored from generation to generation? The answer
to these questions can begin to explain how native plants have been able
to respond to changing glacial boundaries across continental latitudes
and altitudinal climatic boundaries. If a genetic feedback from environmental
conditions exists, then it would seem appropriate that it be coupled to
the mechanisms associated with control of reproductive physiology known
to be entrained by day length conditions.
Return to the MNL 66 On-Line Index
Return to the Maize Newsletter Index
Return to the MaizeGDB Homepage