PURDUE UNIVERSITY Lafayette, Indiana Department of Botany and Plant Pathology

1. Modification of R^{St} stability.

Modification of R^{St} stability.

Modification of R^{St} stability.

Modification of R^{St} stability.

Modification of R^{St} stability. crossover units distal to the R-locus. The modifier interacts with $R^{\rm st}$ to increase the frequency of colored spots in the aleurone. Tests by several investigators have shown that $\underline{\mathtt{M}}^{\mathtt{st}}$ does not alter the frequency of germinally recoverable mutations of \underline{R}^{st} to self-colored aleurone (\underline{R}^{sc}), despite its striking effect on aleurone phenotype.

Exceptional ears from crosses involving \underline{R}^{st} \underline{M}^{st} have been observed by the author and others in which it appeared that $\underline{\mathbf{M}}^{\mathbf{st}}$ was assorting independently of the \underline{R} locus. Progeny tests from some of these ears verified the independent assortment of a modifier of the $\overline{ ext{R}}^{ ext{st}}$ phenotype. Two such isolates were designated transposed- M^{st} l ($tp-M^{st}$ l) and transposed- M^{st} 2 ($tp-M^{st}$ 2), and the following two stocks were established: $\underline{R}^{\text{st}} + \underline{R}^{\text{st}} + \underline{tp-M}^{\text{st}} 1/\underline{tp-M}^{\text{st}} 1$; $\underline{R}^{\text{st}} + \underline{R}^{\text{st}} + \underline{tp-M}^{\text{st}} 2/\underline{tp-M}^{\text{st}} 2$. The phenotypic effects of tp-Mstl and tp-Mst2 were not measured quantitatively but both gave the general impression of a darker phenotype than that produced by Mst in the linked position.

The above two stocks were tested for frequency of mutation to $\underline{\mathtt{R}}^{\mathtt{SC}}$ by pollinating them with \underline{r}^{r} pollen and growing out the self-colored kernels for verification. The data from these tests are shown below together with those from other tests measuring the frequency of $\underline{R}^{\text{SC}}$ mutations in $\underline{R}^{st}\underline{M}^{st}$ and \underline{R}^{st} ± stocks.

	R ^{sc} frequency	Rate X10 ⁻⁴	Limits expectation lower	of (P=.05) upper
$R^{\text{st}} + R^{\text{st}} + \frac{\text{tp-M}^{\text{st}}}{1} / \frac{\text{tp-M}^{\text{st}}}{1}$	59/8,822	66.9	50.9	86.3
$R^{\text{st}} + R^{\text{st}} + \frac{\text{tp-M}^{\text{st}}}{2} + \frac{\text{tp-M}^{\text{st}}}{2}$	26/8,200	31.7	21.8	45.4
Rst Mst/Rst Mst	41/23,830	17.2	12.3	23.3
$\underline{\underline{R}}^{\text{st}} \pm /\underline{\underline{R}}^{\text{st}} \pm$	129/60,576	21.3	17.8	25•3

The two bottom lines in the above tabulation show that $\underline{\mathsf{M}}^{\mathsf{St}}$ in the linked position had no significant effect on the frequency of R^{sc} mutations. These two rates are lower than those in the tp-M st stocks; the difference was significant for tp-Mst1 and approached significance for tp-Mst2. Also, the <u>tp-M</u>stl rate was significantly higher than the <u>tp-M</u>st2 rate. If $\frac{\text{tp-M}^{st}}{\text{tp-M}^{st}}$ and $\frac{\text{tp-M}^{st}}{\text{tp-M}^{st}}$ 2 are in fact $\frac{\text{M}^{st}}{\text{transpositions}}$, $\frac{\text{M}^{st}}{\text{R}^{st}}$ has been altered in such a manner that it increases the frequency of $\frac{\text{R}^{st}}{\text{R}^{st}}$ to $\frac{\text{R}^{sc}}{\text{mutations}}$, and the degree of increase was not the same in the two cases tested. altered action of $\underline{M}^{\text{St}}$ could be the consequence of the positional change or of a transposition associated mutation (change of state).

It is possible that $\underline{\mathsf{tp-M}}^{\mathsf{st}}$ and $\underline{\mathsf{tp-M}}^{\mathsf{st}}$ are not in fact $\underline{\mathsf{M}}^{\mathsf{st}}$ transpositions but transpositions of some other element, probably from the \underline{R} locus, that modifies the stippled phenotype in a manner similar to $\underline{\underline{M}}^{\mathrm{st}}$ but also increases the instability of R^{st} . Kermicle (Genetics 64:247-258) has suggested that a hypothesized \underline{R} locus element (\underline{I}^{R}) might, following transposition, have a phenotypic effect on \underline{R}^{st} similar to that of \underline{M} .

Plant color suppression by a component of the Rst gene.

Colorless and near-colorless aleurone mutants of several different classes have been isolated from \underline{R}^r \underline{R}^{st} plants. Mutants of one class are associated with crossing over, have near-colorless aleurone, and mutate from green to red plant color. The $\underline{R}^{\text{St}}$ allele has been resynthesized in heterozygotes between a mutant of this class, $r^g(nc)1-3$, and R^{sc} (selfcolored aleurone mutant from R^{St}) (Ashman Genetics 64:239-245). Based on these and other data, R^{st} was postulated to be composed of an aleurone pigmenting component, \underline{Sc} , and a pigment inhibitor, \underline{I}^R . On this basis, the resynthesis of R^{st} in the above heterozygote resulted from a crossover that brought together on the same chromosome an \underline{Sc} component from \underline{R}^{SC} and an IR component from rg(nc)1-3.

 $\underline{r}^{g}(nc)$ 1-3 mutates from green to red plant color, and these mutants were designated \underline{r}^{r-m} (nc)1-3. Tests were made to determine the effect of the plant color mutation on the resynthesis of \underline{R}^{st} in heterozygotes with RSC. The data are presented below.

The data are presented Heterozygous	Progeny numbers	Number of kernels	No. of Rst mutants
combinations r-m(nc)1-3/Rsc	68:512-525 69:121-127	88,645	0
$\underline{\mathbf{r}}^{g}(nc)1-3/\underline{\mathbf{R}}^{sc}$	64:278-281 66:67-73 69:106-112	109,217	20