2. Peroxidase isozymes in the developing endosperm of maize. Zymograms of peroxidase isozymes from five different stages, i.e., 10, 15, 20, 25 and 30 day old developing endosperms, of opaque-2 mutant and normal Indian inbred maize (CM 201) were developed at pH 8.5 in polyacrylamide gel. The bands of zymograms were divided into three zones, a cathodal zone with slow mobility, a central zone with intermediate mobility, and an anodal zone with faster mobility. Bands within each zone were numbered in increasing order of mobility. The opaque-2 and the normal differed widely in the number of peroxidase bands in the 10 day and 30 day old endosperms, but only by a single band in the 15 day, 20 day and 25 day old endosperms. The 25 day old endosperm of opaque-2 exhibited the maximum number of twelve bands, five cathodal (C_1-C_5) , two intermediate $(I_1 \text{ and } I_2)$, and five anodal (A_1-A_5) ; whereas the normal showed eleven bands with only the A_3 band of the anodal zone missing. The 10 day old endosperm of opaque-2 showed seven bands C_2 , C_3 , C_4 , I_1 , I_2 , A_1 and A_2 while the normal showed only four bands (C_2, C_4, I_1) and (C_1, C_4, I_1) . The 30 day old endosperm of normal showed eight bands $(C_1, C_4, I_1, I_2, A_1)$ and $(C_1, C_4, I_1, I_2, A_1)$ but opaque-2 showed only six, the bands $(C_1, C_4, I_1, I_2, A_1)$ being absent. Differences in the intensity of the bands were also observed in terms of the maturity and the type of endosperm, especially in the C-zone. The developing opaque-2 and normal endosperms show significant qualitative differences only in the C-zone, which suggests that this zone might control the phenotypic difference and possibly the high lysine and tryptophan content in the opaque-2 mutant. Table 1 The peroxidase isozyme pattern in normal (N) and opaque-2 $(\underline{o_2}) \text{ endosperm}$ | | | | | | | | | | | | |----------------------------------|--------|-----|----------|-----|----------|---|--------|-------------|--------|---| | | 10 day | | 15 day | | 20 day | | 25 day | | 30 day | | | Bands | 02 | N | °2 | N | °2 | N | °2 | N | °2 | N | | A. Cathodal zone | | | | | | | | 1 | | | | c_1 | - | - | _ | - | - | - | + | + | + | + | | c ² | + | + | + | + | + | + | + | + | + | + | | c ₃ | + | - | + | + ' | + | + | + | + | + | + | | c ₃
c ₄ | + | + | + | + | + | + | + | + 1 | + | + | | c ₅ | - | - | + | + | + | + | + | + | - | | | B. Central zone | | | <u> </u> | | | | | | | | | Il | + | + | + | + | + | + | + | + | + | + | | I ₂ | + | + . | + | + | + | + | + | + | - | + | | C. Anodal zone | | | | | <u> </u> | | | | | | | A _l | + | | + | + | + | + | + | + | + | + | | A ₂ | + | - | + | + | + | + | + | + | - | + | | A ₃ | _ | - | + | _ | + | - | + | - | - | - | | A ₄ | - | - | + | + | + | + | + | + | - | - | | A ₅ | - | - | + | + | + | + | + | + | - | - | | | | | | | | | | | | | - A. Padma - G. M. Reddy ## 3. Induction of mutations with hydrazine. Homozygous multiple dominant seed with \underline{Bm}_2 , \underline{Lg}_1 , \underline{A}_1 , \underline{Su}_1 , \underline{Pr} , \underline{Y}_1 \underline{Gl}_1 , \underline{wx} and \underline{G}_1 markers was treated with 0.04 M and 0.08 M of hydrazine (NH₂NH₂·H₂O) at pH 8.5. One thousand seeds for each treatment were taken. The seeds were presoaked for 24 hours in water. The treatment duration was 24 hours. In the case of 0.04 M hydrazine treatment, the following eleven seedling mutations were observed out of 512 plants in the M_1 generation (M_1 = the seedlings raised from treated seeds).