2. Peroxidase isozymes in the developing endosperm of maize.

Zymograms of peroxidase isozymes from five different stages, i.e., 10, 15, 20, 25 and 30 day old developing endosperms, of opaque-2 mutant and normal Indian inbred maize (CM 201) were developed at pH 8.5 in polyacrylamide gel. The bands of zymograms were divided into three zones, a cathodal zone with slow mobility, a central zone with intermediate mobility, and an anodal zone with faster mobility. Bands within each zone were numbered in increasing order of mobility.

The opaque-2 and the normal differed widely in the number of peroxidase bands in the 10 day and 30 day old endosperms, but only by a single band in the 15 day, 20 day and 25 day old endosperms.

The 25 day old endosperm of opaque-2 exhibited the maximum number of twelve bands, five cathodal (C_1-C_5) , two intermediate $(I_1 \text{ and } I_2)$, and five anodal (A_1-A_5) ; whereas the normal showed eleven bands with only the A_3 band of the anodal zone missing.

The 10 day old endosperm of opaque-2 showed seven bands C_2 , C_3 , C_4 , I_1 , I_2 , A_1 and A_2 while the normal showed only four bands (C_2, C_4, I_1) and (C_1, C_4, I_1) . The 30 day old endosperm of normal showed eight bands $(C_1, C_4, I_1, I_2, A_1)$ and $(C_1, C_4, I_1, I_2, A_1)$ but opaque-2 showed only six, the bands $(C_1, C_4, I_1, I_2, A_1)$ being absent.

Differences in the intensity of the bands were also observed in terms of the maturity and the type of endosperm, especially in the C-zone.

The developing opaque-2 and normal endosperms show significant qualitative differences only in the C-zone, which suggests that this zone might control the phenotypic difference and possibly the high lysine and tryptophan content in the opaque-2 mutant.

Table 1 The peroxidase isozyme pattern in normal (N) and opaque-2 $(\underline{o_2}) \text{ endosperm}$

										
	10 day		15 day		20 day		25 day		30 day	
Bands	02	N	°2	N	°2	N	°2	N	°2	N
A. Cathodal zone								1		
c_1	-	-	_	-	-	-	+	+	+	+
c ²	+	+	+	+	+	+	+	+	+	+
c ₃	+	-	+	+ '	+	+	+	+	+	+
c ₃ c ₄	+	+	+	+	+	+	+	+ 1	+	+
c ₅	-	-	+	+	+	+	+	+	-	
B. Central zone			<u> </u>							
Il	+	+	+	+	+	+	+	+	+	+
I ₂	+	+ .	+	+	+	+	+	+	-	+
C. Anodal zone					<u> </u>					
A _l	+		+	+	+	+	+	+	+	+
A ₂	+	-	+	+	+	+	+	+	-	+
A ₃	_	-	+	_	+	-	+	-	-	-
A ₄	-	-	+	+	+	+	+	+	-	-
A ₅	-	-	+	+	+	+	+	+	-	-

- A. Padma
- G. M. Reddy

3. Induction of mutations with hydrazine.

Homozygous multiple dominant seed with \underline{Bm}_2 , \underline{Lg}_1 , \underline{A}_1 , \underline{Su}_1 , \underline{Pr} , \underline{Y}_1 \underline{Gl}_1 , \underline{wx} and \underline{G}_1 markers was treated with 0.04 M and 0.08 M of hydrazine (NH₂NH₂·H₂O) at pH 8.5. One thousand seeds for each treatment were taken. The seeds were presoaked for 24 hours in water. The treatment duration was 24 hours.

In the case of 0.04 M hydrazine treatment, the following eleven seedling mutations were observed out of 512 plants in the M_1 generation (M_1 = the seedlings raised from treated seeds).