centromere misdivision may be the primary factor in production of derivatives of the ${\bf B}^9$ chromosome. Experiments are underway to test the validity of this idea.

Bibliography

- Bianchi, A., Bellini, G., Contin, M., Ottaviano, E.: Nondisjunction in presence of interchanges involving B-type chromosomes in maize and some phenotypical consequences of meaning in maize breeding. Z. Vererbungsl. 92, 213-232 (1961).
- 2. Carlson, Wayne R.: Nondisjunction and isochromosome formation in the B-chromosome of maize. Chromosoma (Berl.) 30, 356-365 (1970).
- Carlson, Wayne R.: Unstable derivatives of the B^9 chromosome. Maize News Letter 43: 78-79 (1969). 3.
- 4. Ghidoni, Achille: Inheritable instability of the B chromosome. Maize News Letter 44: 142-144 (1970).
- 5. Carlson, Wayne R.: A test of homology between the B chromosome of maize and abnormal chromosome 10, involving the control of nondisjunction in B's. Molec. Gen. Genetics 104, 59-65 (1969).

Wayne Carlson

IOWA STATE UNIVERSITY Ames, Iowa 50010 Department of Agronomy

1. The effect of B chromosomes on a chromosome translocation during endosperm development.

In MNL 43: p. 70 it was reported that a chromosome segment of a 1-3 translocation (1L.95; 3L.35) was lost during endosperm growth. This could be detected by following a marked segment $(\underline{A_1Sh_2})$ on the trans-

located arm. In testcrosses of this translocation $\frac{TA_1Sh_2}{a_1sh_2}$ not all the colored-round progeny were sectored since both sectored and non-sectored colored kernels were observed. It was assumed that a second factor was necessary for sectoring behavior and that, from the frequency of sectored and non-sectored kernels, this second factor was assorting independently of the translocation. It was suspected that B chromosomes represented the second factor. This was tested by crossing non-sectored kernels on

the $\underline{a_1\underline{sh}_2}$ testers containing B chromosomes. It is seen from Table 1 that sectoring ear cultures were more frequent among B chromosome containing crosses.

Table 1 Effect of B chromosomes on sectoring behavior among crosses of $\underline{a_1}\underline{sh_2}$ testers with and without B chromosomes by plants with the translocation from non-sectoring kernels

0110		
	Number of ear cultures with colored round kernels with	
Number of B's	Sectors**	No sectors
	8	20
O B's*	41	6
1-3 Control (without B's)	3	9
001102 0=		. 1 - bhot

^{*}These are sibs of B containing stocks that were segregating without B's.

Additional findings from this study:

- the frequency of sectoring is undifferentiated in crosses with male and female originated B chromosomes.
- a dosage effect of B chromosomes was not evident.
- kernels with a sectoring potential (the translocation plus B's) do not always show sectors.

The chromosome segment leading to the sector is limited to the distal portion of the Tl-3 chromosome indicating that the sector is a result of a breakage loss rather than of non-disjunction of the whole

It is likely that the B chromosomes interact with the knob on the chromosome. chromosome 3 portion of the Tl-3 chromosome. Sunee Ruktanonchai

Peter A. Peterson

^{**}An ear culture was designated as sectored when one kernel showed a sector.