9. Interallelic complementation at the Sh locus. EMS induced mutations at the $\underline{\mathbf{Sh}}_1$ locus were reported last year (MNL 42:53). Six of the 16 mutants are CRM⁺ by immunological tests and the presence of a \mathbf{Sh}_1 protein band can be demonstrated electrophoretically. Two of these mutants, designated $\underline{\mathbf{sh}}_1^F$ (fast) and $\underline{\mathbf{sh}}_1^S$ (slow), show an altered rate of migration of the protein in starch gel electrophoresis. The migration rate of the \mathbf{Sh}_1 protein in the other four CRM⁺ mutants, designated $\underline{\mathbf{sh}}_1^A$, $\underline{\mathbf{sh}}_1^B$, $\underline{\mathbf{sh}}_1^C$ and $\underline{\mathbf{sh}}_1^D$, is not altered. F_1 hybrids were made between all the mutants to test for interallelic complementation at this locus. Positive results, as indicated by the occurrence of plump nonshrunken seeds in the F_1 hybrid, have been obtained. Complementation is observed in heterozygotes where the \underline{sh}_1^S allele is combined with \underline{sh}_1^F , \underline{sh}_1^A , \underline{sh}_1^B , \underline{sh}_1^C , or \underline{sh}_1^D . No other combination shows complementation. These alleles give rise to the typical \underline{sh}_1 phenotype when homozygous or heterozygous with the standard \underline{sh}_1 allele. The complementation at the phenotypic level is complete since the complemented phenotype of the hybrid is indistinguishable from the \underline{Sh}_1 phenotype. The starch gel electrophoretic analysis of the complementing hybrid always reveals the two parental protein bands and no hybrid band is seen. The complemented hybrid on selfing segregates in a 1:1 ratio for plump and shrunken seeds as expected and when crossed to the standard $\underline{\mathfrak{sh}}_1$ yields seeds of only mutant phenotype. The individual endosperms of a selfed ear of a $\underline{\mathfrak{sh}}_1$ hybrid, when subjected to starch gel electrophoresis, gave a segregation ratio of 1F:2FS:1S and those produced in the testcross to $\underline{\mathfrak{sh}}_1$ exhibited 1F:1S (Table 1). Protein subunit interaction has been shown to be the molecular basis of interallelic complementation in fungi and bacteria. A similar mechanism probably occurs in this system. No hybrid band is present in the complementing heterozygote although such a band could easily be detected if present. However, a hybrid protein may actually exist in vivo and its absence after electrophoresis may be an artifact of the electrophoretic technique, as is the case with the hybrid hemoglobins. Table 1 | Type of Cross | Segregation in F ₂ and Testcross Generation | | | | | | | |--|--|----------|------|--|----|------------|-------| | | Seed Phenotype | | | Electrophoretic Pattern of 20 Day Old Endosper | | | | | | Plump | Shrunken | x² | F | S | FS | Total | | sh ₁ ^S /sh ₁ ^F ⊗ | 1275 | 1520 | 1.65 | 19 | 24 | 3 9 | 82 | | sh ₁ ^S /sh ₁ ^F x
sh ₁ /sh ₁ | o | 1200 | - | 34 | 38 | 0 | 72 | (See article 9 by Prem S. Chourey on preceding page.)