Table 1	Bacl	ccross				Br ₂ /-	br2/br2	Total
1.	Br ₂ /Br ₂ x	(br ₂ /br ₂ x	TB-la)(hypoploid	plant)	26	0	26
2•	Br ₂ /br ₂ x	n	11	n	tì	37	28	65
3.	br ₂ /br ₂ x	11	tt	11	11	0	278	278 *
	*combined	data from	several	families				

The testcross data in table 2 were obtained by the use of reciprocal translocation stocks involving chromosome 1.

Tab	<u>le 2.</u>	D 1.						
Tra	nslocation	Break Point	XY	Ϋ́X	<u> </u>	жу	Total	% Recomb.
1.	T1- 8	18 • 39 8L: • 07	137	87	71	133	425	36.47
2.	T1-6c	1S . 25 6L . 27	175	54	80	146	455	29.45**
3•	T1-3	1 cent. 3 cent.	134	48	28	127	337	22 . 55**
4.	T1-9	1L .19 9S .20	117	16	3	133	269	7.06**
5.	T1-8	1L .22 8L .78	172	2 2	12	146	352 /	9.66**

X=translocation heterozygote;x=normal;Y=normal ht.;y=brachytic-2 ** X² for independence P>.Ol
The data in table 2 again indicate that brachytic-2 is located in the

long arm of chromosome 1.

Brachytic-1 dwarf is also located in the long arm of chromosome lefthe test for allelism of these two dwarf mutants is negative. The F₂ of these two dwarf mutants segregated 228 normal: 184 dwarf (X² for 9:7 ratio = .1368; P=.75-.50). Brachytic 1 and 2 should therefore be over 50 cross-over until apart in the long arm of chromosome 1.

R. J. Lambert

5. Frequency of seed set in an F, hybrid of Tripsacum and corn.

Well-established clonal divisions of the F₁ hybrid of T. dactyloides (3n=54) x Zea mays var. Puño (originally produced by Lois Farquharson) were allowed to open-pollinate in the nursery. Out of a total of 417 spikelets, 25 produced well developed seeds (6.0% seed-set). In hand pollinations, using corn as the male parent, 6 seeds were obtained from a total of 50 spikelets pollinated (12% seed-set). Nine of the 31 seeds germinated and two of these produced twin seedlings. The occurrence of twins indicates that the polyembryony of the Tripsacum parent was transmitted to the hybrid. The open-pollinated seedlings could be backcrosses to corn or Tripsacum, selfs, or apomicts. Cytological analysis of the plants is necessary to determine their chromosomal

Grand :	No. of pla	ints observed	Expected P		
Cross	Res.	Susc.	ratio	value	
(W64A x LP) x W64A	30	29	1:1	0.80-0.90	
Tx 325 x W37A F ₂	147	46	3:1	0.70-0.80	
NC13 x W37A F ₂	150	45	3:1	0.50-0.70	
	(Field	l Data)			
Blo x GELLO F	202	60	3:1	0.30-0.50	
Ohlil x GElilio F ₂	187	68	3:1	0.50-0.70	
Blo x LP F ₂	157	54	3:1	0.80-0.90	
Oh41 x LP F ₂	186	63	3:1	0.90-0.95	
(OhO7A x GELLLO) x OhO7A	92	97	1:1	0.70-0.80	
(W22R x GE44O) x W22R	97 °	110	1:1	0.30-0.50	
(OhO7A x LP) x OhO7A	96	87	1:1	0.50-0.70	
(W22R x LP) x W22R	102	98	1:1	0.70-0.80	

a/ LP = Ladyfinger popcorn

To determine the relationship of the genes for resistance in the 3 resistant sources, the cross W37A x GELLLO was advanced to the F_2 generation and the cross GELLLO x Ladyfinger popcorn was crossed reciprocally with the susceptible hybrids Hy2 x OhO7 and WF9 x W22R as well as advanced to the F_2 generation. The genes in the 3 resistant sources appear to be identical, alleles, or very closely linked as indicated by the following data:

Cross		of plants greenhouse	Number of plants in the field		
	Res.	Susc.	Res.	Susc.	
W37A 🗴 GЕЦЦО	300	0			
GEIµIO ж LP≅/ F ₂	110	0	297	0	
(GELLLO x LP) x (Hy2 x Oh07)	113	Ο	233	0	
(Hy2 x OhO7) x (GЕЩО x LP)	112	0	240	0	
(GELL10 x LP) x (WF9 x W22R)	424	σ	210	0	
(WF9 x W22R) x (GEL40 x LP)	109	0	229	. 0	

a/ LP = Ladyfinger popcorn