This pigment-enhancing "side-effect" of stippled tends, of course, to vitiate the present test for a cytoplasmic component in the R paramutation system. If a cytoplasmic element that depresses R aleurone pigmentation is present in the r segregates from R tr ??, its effect is exceeded by the oppositely directed inter-kernel action of stippled.

R. A. Brink

2. Relative paramutagenic capacities of the paramutant forms of R^g mutants derived from the standard R^r allele.

It has been found that the standard $R^{\mathbf{r}}$ allele and its $R^{\mathbf{g}}$ mutant derivatives not only become heritably reduced in pigmenting action when passed through a heterozygote with the stippled ($R^{\mathbf{St}}$) allele but that they also acquire the capacity to promote a similar, though smaller, reduction in pigmenting action when combined with other paramutable genes (Brown and Brink, Genetics 15:1313-1316, 1960). The data reported here indicate that ten $R^{\mathbf{g}}$ alleles independently derived by mutation from standard $R^{\mathbf{r}}$ are indistinguishable from one another with regard to the level of paramutagenic activity acquired in heterozygotes with $R^{\mathbf{st}}$.

Pollen from each of twelve R^rR^r plants was applied to silks of R^gRst plants representing the ten R^g alleles. Progeny from a total of Ill successful pollinations of this type were grown in the following season, and two randomly selected R^rR^g: plants from each family were testcrossed to r^gr^g pistillate parents. In this way, R^g genes derived from nine to twelve R^gRst plants in the case of each R^g allele were combined with standard R^r genes from a common source. Differences in paramutagenic competence among the paramutant forms of the various R^g alleles should be reflected in this test as differences in the level of pigmenting action of R^r genes in the corresponding groups of R^rR^g: plants.

Forty-two $R^r r^g r^g$ kernels from each $r^g r^g \circ x R^r R^g \circ d$ test mating were scored against a standard set of kernels defining seven pigmentation classes. The mean $R^r r^g r^g$ scores from testcrosses of two $R^r R^g \circ d$ plants from each of the lll $R^g R^g \circ d$ $x R^r R^r$ matings are shown in Table 1.

An analysis of variance performed on the data in Table 1 revealed no differences among the mean scores attributable to the Rg alleles involved in the respective pedigrees (F = .751, P > .1). The overall mean $R^{r}g^{r}g$ scores from testcrosses of $R^{r}R^{g}$ plants involving individual Rg alleles are all within the range 5.21 to 5.34. These results show that the ten Rg mutants from standard R^{r} are indistinguishable from one another with regard to the level of paramutagenic action acquired in heterozygotes with R^{st} .

Table 1

Mean scores for Rrrrr kernels from testerosses to rer pistillate parents of RrR of offspring of Rerst 2 x RrRr of matings. Each entry represents the pooled tests of two RrRg plants.

Rrar of parent no.	Rg allele number									
	1	2	3	14	5	6	7	8	9	10
1	5.10	5.26	5•29	5 - 48	5.38	5.50	5 .5 7	was:	5.28	5.01
2	4.73	5.26	5•32	5• 32	5.01	5•32	5.27	5• 32	5.07	5.18
3	5.43	5• 32	5.11	5• 30	4•98	5. 25	5•48	5.4I	5 <u>.</u> 18	5.19
4	5•35	5.28	5.12	5-29	5.41	5.00	5•27	5.20	5•53	5•43
5	5•34	5-07	4.87	5•43	5.16	5•37	5.11	5.02	5.22	5.43
6	5.31	5.12	5.43		5.49	5.22	5•43	5.11	5.84	4.99
7	5•24	5-41	5.31	5.40	5-41	5•32	5.29	5.36	5.08	5∙08
8	5.42	5.31	5•40			5.29	5-20	5.31	5.03	4.81
9 .	5.20	5-46	5.26	5.10	5.19	5.48		5.30	5.27	5.68
10	5.55	5.63	5.03	5-17	5.28	5-29	5 . 111	5.19	5-45	5.08
11	5+29	ang end hab	4.92	5-43		5,38		5.51	5.10	5.40
12	5• 24	5.28	5-42	5.06	4.97	****		5.10	5.43	
Mean	5.27	5.31	5.21	5.3 0	5.23	5.31	5• 34	5.26	5. 29	5.21

Previous studies (Brink, Brown, Kermicle and Weyers; Genetics 45:1297-1312, 1960) established that the pigmenting capacities of R^T and eight of its Rg mutant derivatives are reduced to a similar extent in heterozygotes with RSt. Testcrosses to rgrg pistillate parents of R^{TRSt} and RgRSt sib progeny from R^{TRS} x RStRSt matings have confirmed that the R^T and Rg alleles are equally sensitive to the paramutagenic stimulus of RSt when measured in terms of aleurone pigmenting action. The present test does not provide for an assessment of the relative paramutagenic potencies of paramutant R^T and paramutant R^G. The observation that ten R^G mutants of independent origin do not differ in level of paramutagenic action acquired in heterozygotes with RSt, however, agrees with the conclusion, implied by the results of tests of R^TRSt and R^GRSt plants, that the mutational events underlying the origin of the R^G alleles involved in these studies have not altered the chromosomal elements concerned with paramutation.

Douglas F. Brown

Progressive secondary paramutation.

The reduction in the pigmenting action of paramutable R alleles which is induced by paramutant R' genes is slight when compared with that incited by R^{St} (Brown and Brink, Genetics 45:1313-1316). Tests of $R^{T}R^{S}$ and $R^{T'}R^{S'}$ plants in F_1 , F_2 , and backcross 1 generations, which are described here, reveal that the extent of impairment in the pigmenting action of R^{S} or R^{T} is cumulative when the paramutant allele acts in two successive sporophytic generations.

RTRg staminate testcross parents were produced according to the following mating plan:

Four lines, each containing a different R^g allele, were established from single $R^g R^g \cdot Y \times R^r R^r$ of pollinations. A single $R^r R^g \cdot Y = X^r R^r \cdot Y = X^r R^r$