something or in other words that \underline{a}^{pm} is $\underline{\alpha}$ $\underline{\beta}$ (incomplete) and that when \underline{a}^{pm} mutates to $\underline{\Lambda}^{r}$ some element leaves $\underline{\alpha}$ and moves to the incomplete $\underline{\beta}$ component providing a complete $\underline{\beta}$; thus $\overline{\Lambda}^{r}$ is $\underline{\alpha}$ (incomplete) $\underline{\beta}$ and is potentially able to revert to \underline{a}^{pm} again.

Regardless of the kind of interpretation it is clear that the controlling element of the \underline{a}^{pm} allele is able to move frequently from one aspect of \underline{A}_1 expression to another and that sometimes it affects both at the same time as shown by the presence of seeds that are simultaneously mutating from colorless to pale and from colorless to full color.

M. G. Nuffer

3. Location and effects of c2.

The following data show \underline{c}_2 to be on chromosome μ :

Parent	хч	Phase	+ +	+ у	x +	ху	Recomb.
wx T4-9g/c ₂	C ₂ -Wx	RS	117	30	46	4	35 ± 6.1%
su/c ₂	C ₂ -Su	RS	617	205	251	63	46 ± 2.3%

If c_2 is in the long arm it is probably beyond \underline{gl}_3 (\underline{su} - \underline{gl}_3 is around 35 units). The short arm has not been eliminated, however.

A few effects of c_2 were described briefly in News Letter 34:91. A more complete summary is now possible. The homozygous recessive c_2 c_2 and double-mutant combinations with most others $(a_1, a_2, bz_1, bz_2, c_1, c_1, c_1, r$, and pr) have completely colorless aleurone tissue but c_2 in kernels have dilute purple color. In plant tissues, c_2 results in much-reduced digmentation in the husks and sheaths; strong color develops only in the leaf auricles, glume bars, and similar tissues. The combinations of c_2 with other plant-color factors show the effects of both; for example, c_2 a_1 plants (with a_1 plants in color but like a_2 in strength of pigmentation. If a_2 affects pericarp color in a_2 background at all, it is only by a very slight reduction in color intensity. The dosage effect of a_2 in the aleurone is very clear; from a selfed ear of a_2 , a_3 selfs of full-color seeds were found to include 10 +/+ and 3 +/ a_2 , while 15 selfs of pale seeds were all +/ a_2 .