ising, and could be used as seed parents of single crosses.

R. W. Jugenheimer V. Trifunovic

UNIVERSITY OF ILLINOIS Urbana, Illinois Department of Botany

1. Linkage and aberrant segregation of a new Teopod locus.

A dominant mutant, apparently identical in phenotype with $\underline{Tp_1}$ on chromosome 7, was found by Dr. J. R. Laughnan. The new Teopod locus is located on chromosome 10, proximal to the golden locus and about 13 units from \underline{R} :

Cross: TpGR x tpgr tpgr

7

Parent Tp G R		Singles Tp G r		Singles Tp g r	_	Double Tp g R	s N G r
122	96	14	18	2	1	σ	0

Additional data on Teopod-golden distance is given below:

	Tp G	Ng	Трд	N G	Total	Percent Recomb.
Backcross data	314	3 05	3	8	630	1.75
F ₂ data	736	228	7	10	981	1.25

One strain carrying the new Teopod shows aberrant ratios of Teopod and non-Teopod plants. Heterozygotes, through three generations of testing, have produced only Tp progeny on selfing, while crosses of the same plants, used as egg or pollen parents, with non-Teopod, give 1 Tp: 1 tp ratios in the progenies. Subsequent selfing of the outcross progenies gives families showing normal 3:1 segregation.

Helen Peterson

2. Noncrossover alpha (pale) derivatives from Ab:P.

The \underline{A}^{b} complex of Peruvian origin (beta:alpha) is highly suited to an analysis of the origin of the noncrossover alpha element since the