15. Instability of the α and β components of the A₁ locus.

A rather large population of A^b Sh₂ et/a-x2 Et plants, which were pollinated by a sh et in order to determine the types of mutants that would be produced without the conventional type of crossing-over, yielded a single dilute Sh seed with frequent full colored dots. Using Laughnan's α β designation of the components of the A^b locus this case appeared to be a change of β to an unstable recessive form while α remained unchanged. When the dilute mutant was placed in a marked heterozygote with a null allele for the a locus ($\alpha \beta^m$ Sh/a^s sh), and backcrossed to the recessive (a^s sh), four colorless Sh dotted seeds were obtained. Each appeared to have lost α but retained the unstable β . Subsequent tests showed that they had lost the dominant brown pericarp effect that is characteristic of α . There were no genetic markers to the left of α so there was no way of determining whether the loss was by mutation or by crossing over. These cases probably are examples of an unstable β by itself.

Another type of change was observed in two cases from $\alpha \beta^m$. This type was colorless Sh but had both dilute and full colored sectors suggesting that both α and β had become unstable. The tests for pericarp color revealed that they retained the dominant brown expression of α . There is some indication that mutability of these components may be influenced by a second factor, but in any case it is neither Dt nor Ac.