4. <u>Crossing over differences in male and female</u>

Studies are underway to make these tests for regions which may be near the centromeres. For many, stocks have to be synthesized, but a few more results have been obtained:

Tester parent	$F_{\scriptscriptstyle{1}}$ het.	_	F ₁ heterozygote used at m		F ₁ heterozygote used as հ	
		number	% recomb.	number	% recomb.	
+lg ₂	Rg + + 1g ₂	618	26.7	262	35.1	
<u>+d</u> ++	Rg + d ₁	897*	9.6*	347*	16.4*	
y pb	<u>+ +</u> y pb	304	1.64	394	5.8	

^{*}recombination calculated by product method for (3:1) (1:1) ratios

Crossing over values are higher in the $_{\rm h}$. Similar differences were reported in the 1950 Coop Newsletter #24, p. 56; for sh-wx, the difference was most pronounced in plants heterozygous for T5-9a, less so in those homozygous for the translocation or without the translocation. In that report, the upper row of data for each group is from the heterozygote used as the $_{\rm h}$ -- this was not indicated in that summary.

Mr. E. Clark is studying crossing over in chromosome 9 in reciprocal crosses in a series of translocations involving the short arm of chromosome 9.