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The Doebley laboratory developed a set of 866 maize-teosinte BC2S3 recombinant inbred lines 

(RILs). The maize parent of these lines was an U.S. maize inbred line, W22, and the teosinte 

parent was Zea mays ssp. parviglumis (CIMMYT accession 8759) from the Balsas region of 

southwestern Mexico. W22 was used as the ear parent for the F1 and the recurrent parent for 

the two generations of backcrossing. The lines were scored for over 50,000 marker loci using 

genotyping-by-sequencing (GBS) technology and phenotyped for 16 traits during three field 

seasons. QTL analysis is summarized in the PhD dissertation of Shannon (2012), which is 

available at Doebley lab website (http://teosinte.wisc.edu/). This set of lines have been 

extensively used to map QTLs for many traits, including seed shattering (Lin et al. 2012), leaf 

number (Li et al. 2016), kernel row number (Calderón et al. 2016), shoot apical meristem 

morphology (Leiboff et al. 2016), vascular bundle number (Huang et al. 2016), tassel related 

traits (Xu et al. 2017b), nodal root number (Zhang et al. 2018), and leaf morphological traits (Fu 

et al. 2019). Also, several QTLs have been fine-mapped to single gene including grassy tillers1 

(gt1) for prolificacy (Wills et al. 2013), prolamin-box binding factor1 (pbf1) for kernel weight 

(Lang et al. 2014), glossy15 (gl15) for vegetative phase changes (Xu et al. 2017a), as well as 

several genes for flowering time: ZmCCT10 (Hung et al. 2012), Zea Agamous-like1 (zagl1) 

(Wills et al. 2017), ZmCCT9 (Huang et al. 2018), ZCN8 (Guo et al. 2018), and ZmMADS69 

(Liang et al. 2018).  In addition to phenotypic traits, it has also been used for a comprehensive 

genome-wide eQTL analysis to study the changes in gene expression during maize 

domestication (Wang et al. 2018). 

We report here that seeds of this RIL set are available at Maize Genetics Stock Center, GBS 

marker data available at the Cyverse Discovery Environment: 

http://datacommons.cyverse.org/browse/iplant/home/shared/panzea/genotypes/GBS/v23/teoW2

2_BC2S3_GBS_phased_genos_imputed_20110423.zip and phenotype data available at 

figshare database (https://figshare.com/s/0d3aa121f8393c9b4720). We hope this valuable 

resource will be useful for the maize community on QTL mapping and gene cloning of 

domestication traits or any further studies. 
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