Table 1

Aleurone color segregation in crosses of $(\frac{r-co}{r})$, $F-co* \times r$.

(The r tester was wxwx).

Cross	Non-variegated	Variegated	Total	x ²
3 0334-1 x 808	350	107	457	0.61 ns
3 0334-2 x 515	278	105	383	1.19 ns
3 0334-3 x 516	282	78	360	2.13 ns
3 0334-4 x 511	204	80	284	1.52 ns
3 0334-5 x 921	277	93	370	0.00 ns

Test for relation to the En system: In another series of crosses, variegated kernels of the Colombia line were crossed to $\frac{a^m(r)}{a_1^m-1}\frac{sh_2}{sh_2}$, an En tester stock (Peterson, 1965, Amer. Nat. 99:391). The resulting F_1 was testcrossed by $\frac{dt}{a_1}\frac{sh}{sh_2}\frac{dt}{a_1}\frac{sh_2}{sh_2}$ ($\frac{dt}{a_1}$, an allele that responds to Dt producing colored dots on a colorless background; $\frac{sh_2}{sh_2}$ is a recessive allele conditioning shrunken endosperm and is very closely linked to the $\frac{A_1}{sh_2}$ locus). Kernels with colored spots or sectors were obtained and the resulting plants were backcrossed to $\frac{a_1}{sh_2}$ the kernels on each of five ears obtained from the above cross were counted and grouped according to their phenotypic appearance (Table 2).

None of the X^2 values was significant at the .05 level of probability. Since the heterogeneity X^2 (14.61) was not significant, the data were pooled over all crosses and a non-significant X^2 value of 1.34 was obtained.

Tests to determine whether \underline{F} -co is a \underline{Dt} allele are presently in progress.

Jaime Gonella Peter A. Peterson

3. T-cytoplasm mitochondrial membrane activities.

In view of the striking effect reported by Miller and Koeppe (1971) of <u>Helminthosporium maydis</u> race T toxin in causing the immediate uncoupling of oxidative phosphorylation and irreversible swelling in KCl

medium of T (Texas) but not of N (Normal) mitochondria, a study was initiated to investigate the various details of the pathways of electron transport and associated activities in N and T mitochondria. On the basis of the details of the pathways in Jerusalem artichoke mitochondria developed by Coleman and Palmer (1972, Eur. J. of Biochemistry 26:499), the effects of the race-T pathotoxin on various steps in this network of enzyme reactions was investigated. The race T pathotoxin causes an increase in the activity of cytochrome oxidase and succinate cytochromic reductase, possibly due to a disturbance of the mitochondrial membranes which allows increased substrate accessibility acting as an uncoupler.

The first ATP-coupled site of the electron transport chain, which includes the endogenous NADH dehydrogenase, was studied using malate as a substrate in the absence of exogenous NAD⁺. In T mitochondria, the pathotoxin strongly <u>inhibited</u> the oxidation of malate by intact mitochondria. Malate oxidation via endogenous NADH dehydrogenase in N mitochondria was unaffected by similar concentrations of pathotoxin. Upon the addition of NAD⁺, however, there is a marked stimulation of malate oxidation in intact T mitochondria. Thus, the presence of an <u>intermembrane</u> malate dehydrogenase activity coupled to NAD⁺ reduction leads to an initial and immediate stimulation of malate oxidation via the exogenous NADH dehydrogenase. This confirms that the inhibition of malate and oxoglutarate oxidation in T mitochondria by pathotoxin is almost certainly at the endogenous NADH dehydrogenase complex of the inner membrane.

Peter A. Peterson Richard B. Flavell* D. H. P. Barratt*

4. Location of pg m of the En system.

 pg^m (Peterson, 1960 Genetics 45:115) has been found to be allelic with a pg^m isolated by Neuffer in mutagen treatments. This is uncovered by TB-3b, which places pg^m on chromosome 3S.

Peter A. Peterson

^{*}Plant Breeding Institute, Cambridge, England