| Genotype                       | Leucoanthocyanidin | cyanidin | cyanidin-3-glucoside |
|--------------------------------|--------------------|----------|----------------------|
| bz <sub>1</sub>                | P                  | P        | A                    |
| bz <sub>l</sub> pr             | P                  | À        | A                    |
| bz <sub>l</sub> in             | P                  | P        | A                    |
| bz <sub>l</sub> a <sub>l</sub> | A                  | A        | A                    |
| oz <sub>l</sub> a <sub>2</sub> | P                  | A        | A                    |
| o <b>z</b> 2                   | A                  | TA       | P                    |
| bz <sub>2</sub> in             | A                  | TA       | P                    |
| bz <sub>2</sub> a <sub>1</sub> | A                  | A        | A                    |
| bz <sub>2</sub> a <sub>2</sub> | P                  | A        | A                    |

Table 1. Identification of substances accumulated in different genotypes.

(P = Present; A = Absent; TA = Trace amounts)

These studies suggest that  $\underline{bz_1}$  and  $\underline{bz_2}$  accumulate cyanidin and cyanidin-3-glucoside, respectively, indicating that the  $\underline{Bz_1}$  gene may control a glycosidation step. The double mutants,  $\underline{a_1}$   $\underline{bz_1}$ ,  $\underline{a_1}$   $\underline{bz_2}$ ,  $\underline{a_2}$   $\underline{bz_1}$ , and  $\underline{a_2}$   $\underline{bz_2}$ , lack these pigments.

A. R. Reddy G. M. Reddy

## 6. The role of the modifying factors, In/in and Pr/pr.

Colorimetric analysis of the pigment levels in  $\underline{bz_1}$  in and  $\underline{bz_2}$  in suggests that the homozygous recessive in enhances the production of cyanidin in  $\underline{bz_1}$  and cyanidin-3-glucoside in  $\underline{bz_2}$  tissue. The mutant  $\underline{bz_1}$  Pr accumulates cyanidin and  $\underline{bz_1}$  pr pelargonidin. The accumulation of cyanidin in  $\underline{bz_1}$  and cyanidin-3-glucoside in  $\underline{bz_2}$  indicates that  $\underline{Bz_1}$  might be involved in glycosidation. Further the  $\underline{Bz_1}$  gene may act prior to  $\underline{Bz_2}$  and both of them act after  $\underline{In}$ ,  $\underline{Pr}$ ,  $\underline{A_1}$  and  $\underline{A_2}$ . These observations independently confirm the sequence of gene action proposed earlier (MNL 35:95).

A. R. Reddy G. M. Reddy