fertilized the egg, a kernel having colorless aleurone ($\underline{r}^g\underline{r}^g/-$) but the strongly colored embryo-characteristic of $\underline{R}^{\text{scm}}$ should result.

Extensive matings to $\underline{r}^g\underline{r}^g$ (Inbred W22) females of forty plants treated with 500 R of X-irradiation yielded 102 colorless aleurone but colored embryo kernels. When grown and tested as staminate parents to $\underline{r}^g\underline{r}^g$ the following year, all but 38 segregated self-colored and colorless aleurone in a 1:1 ratio and possessed corresponding embryo phenotypes. Loss of $\underline{R}^{\text{scm}}$ from one sperm in these instances had not lead to detectable alteration in the second. The remaining 38 when similarly tested produced kernels of the selected parental phenotype in a high frequency, indicative of B-10 translocation. This experiment netted, therefore, nearly one translocation of the particular sort desired per irradiated plant, or, in terms of kernels screened, about 3×10^{-4} .

Bor-Yaw Lin

3. Effect of Mst on unstable plant color derivatives of RstR^r heterozygotes.

Among the progeny of $R^{st}R^r$ heterozygotes, near-colorless aleurone derivatives with unstable plant color occur with a frequency of approximately 5×10^{-5} . The phenotype and outside marker configuration of these new forms suggest that they arise by an intralocus recombination event which places the instability component associated with seed spotting of R^{st} into cis relation with the plant pigmenting determiner (P) of R^r . The net effect is that (P) replaces the seed pigmenting component (Sc) of the stippled complex (ScI RNc), yielding (PI RNc). The present report presents data showing that M^{st} , an enhancing modifier of stippling, located 5.7 units distal to R, also increases the plant color instability of (PI RNc) forms.

The plant color gene (\underline{P}) is expressed most conspicuously in the young seedling, where it conditions colored coleoptile and roots, and in the tassel, where it conditions pigmented anthers. The effect of \underline{M}^{St} on unstable expression of (\underline{P}) was investigated at both stages of development, in separate studies. Three (\underline{PI}^RNc) selections of independent origin, isolated by K. V. Satyanarayana, were grown in each case as

heterozygotes with $\underline{r}^{\underline{g}}\underline{M}^{st}$ (test) and $\underline{r}^{\underline{g}}\underline{+}$ (control). Because the three selections gave similar results the data have been bulked.

(a) <u>Instability in the seedling</u>. Five hundred seedlings of genotype ($\underline{PI}^{R}\underline{Nc}$)+/ $\underline{r}^{g}\underline{M}^{st}$ and 500 of genotype ($\underline{PI}^{R}\underline{Nc}$)+/ \underline{r}^{g} + were scored for presence of pigmented sectors in coleoptile and roots:

Genotype	Seedlings with	red sectors
_	Number	<u>%</u>
(PIRNc)+/rgMst	77	15.4
$(\underline{PI}^{R}Nc)+/\underline{r}^{g}+$	21	4.2

The effect of M^{st} was significant (P< 0.01).

(b) <u>Instability in the tassel</u>. Separate populations of plants with genotypes identical to those in Part (a) were grown to maturity and the anthers scored for presence or absence of pigmented sectors:

Genotype	Fraction of plants
	with anther sectors
(PIRNc)+/rgMat	46/48
$(\underline{PI}^{R}\underline{Nc})_{+}/\underline{r}^{g}_{+}$	0/93

Anther sectoring occurred exclusively in the $\underline{\mathsf{M}}^{\mathsf{st}}$ class. This supports the seedling observations in confirming that plant color instability of $(\underline{\mathsf{PI}}^R \underline{\mathsf{Nc}})$ is of the same fundamental nature as seed spotting of $\underline{\mathsf{R}}^{\mathsf{st}}$.

Although anther sectors were small, encompassing four anthers at most, a one-generation test for \underline{M}^{st} in \underline{R}^g stocks is now available.

W. M. Williams

4. Effect of hemizygosity on germinal mutation in the R-stippled and mutable R-Navajo systems.

In a limited test of plants hemizygous for $\underline{R}^{\text{st}}$ (i.e., those having an $\underline{R}^{\text{st}}$ -bearing standard chromosome 10 but the 10^B chromosome of translocation B-10a in place of the normal homologue) Kermicle (1970*) obtained a self-colored ($\underline{R}^{\text{sc}}$) mutation frequency of 39 x 10^{-4} , while plants heterozygous $\underline{R}^{\text{st}}/\underline{r}^{\text{r}}$ (W22 source) gave a value of only 16.2×10^{-4} . In neither case was mutation to $\underline{R}^{\text{sc}}$ related to crossing over at meiosis.

^{*}Genetics 64:247-258