Critical field-collected clonal introductions of <u>Tripsacum</u> from these study areas are being maintained in the Maize Relatives - Genetics Garden of Tulane University.

H. Garrison Wilkes

UNIVERSITY OF VICTORIA Victoria, British Columbia, Canada

1. Biochemical study of anthocyanidins produced by different R alleles.

Analyses of the anthocyanins in maize are being carried out in this laboratory for the purposes of:

- (1) Using anthocyanin formation as an indicator to study gene action at various developmental stages.
- (2) Characterizing different allelic forms of the \underline{R} locus with respect to anthocyanin production.

Five different alleles of the \underline{R} locus were employed for this study:

- (1) standard R r r -red seedlings, red anthers and colored aleurone.
- (2) RgR Canada (P.I. 214199) -red seedlings, green anthers and colored aleurone.
- (3) RR Ecuador (1172) -red seedlings, red anthers and colored aleurone.
- (4) $\underline{r}^{r}\underline{r}^{r}$ -red seedlings, red anthers and colorless aleurone.
- (5) $\underline{r}^{g}\underline{r}^{g}$ -green seedlings, green anthers and colorless aleurone.

All stocks used were strains of W22 carrying \underline{A}_1 \underline{A}_2 \underline{C}_1 \underline{C}_2 \underline{Pr} \underline{pl} . The W22 \underline{B} allele is probably \underline{B}^b (pigmented glume base and culm but otherwise weak plant-color).

Plants for this study were grown in the greenhouse. Pigmented tissues were collected and extracted with 1% HCl in MeOH, concentrated in vacuum and hydrolyzed with 4N HCl for 30 minutes. By adding a few drops of isoamyl alcohol, the hydrolysate was separated into an organic and an aqueous layer. The aglycones in the alcohol layer were spotted on a thin layer plate coated with Avicel S.F. Cellulose. The chromatograms were developed in two directions. First, formic acid: 4N HCl (2:1 v/v),

secondly with either acidified methanol water* (20:1 v/v, 0.5 ml of conc. HCl added per 100 ml of solvent), t-BuOH: 2N HCl: HAC: H_2O (6:1:1:2 v/v), or n-BuOH: HAC: H_2O (2:1:1 v/v). Essentially the same results were obtained with all these second solvents.

The number of different anthocyanidins obtained were as follows:

Leaf Sheaths	Aleurone	Anthers	
6	4	5	
6	4	5	
6	4	-	
6	-	5	
6	-	-	
	6 6 6	6 4 6 4 6 4	

Anthocyanidin spots in different tissues

		Spot number					
Tissue	1	2	3	4	5	6	7
Anthers	+	_	+	+	+	-	+
Leaf Sheaths	+	+	+	+	+	+	-
Aleurone	+		+	+	+	_	<u>-</u>

Spots 1 and 3 have been identified as cyanidin and pelargonidin, respectively.

Spot 4 has been tentatively classified as peonidin.

Spots 2, 5, and 6 have the characteristics of anthocyanidins. Some were purple and some magenta. When exposed to NH₃ vapor or sprayed with Na₂CO₃ they turn bluish.

Spot 7 is orange and turns bluish purple when exposed or sprayed with NH $_{3}$ or Na $_{2}^{\rm CO}{}_{3}{}^{\circ}$

^{*}Solvents developed by Dr. D. B. Mullick
Faculty of Forestry
University of British Columbia
Canada