	3.3.2 - Dente Branco Paulista									
	SP V (1) (2)	36 5	9 0	3 0	0 60	-				
	3.4 - Semi-Dentado									
	3.4.1 - Semi-Dentado	Riogrand	ense							
	RGS XV RGS XVI	18 41	5 5	0	10	15	3 0			
	3.4.2 - Semi-Dentado Paulista									
	SP IX MT VII	19 2	5 0	1 0	0	0	0			
	3.5 - Cravo									
	3.5.1 - Cravo Riogrand	lense								
	RGS VII RGS VIII	58 3 9	3 0	0	30 20	 20	<u>-</u>			
	3.5.2 - Cravo Paulista									
	SP I (1) (2) SP II	24 18 18	0 1 0	0 0 0	70 80 15	20 - -	<u>-</u> -			
4.	EXOTIC COMMERCIAL RACES									
	4.1 - Hickory King									
	RGS IX	53.	0	0	20	20	-			
	4.2 - Cuòa Yellow Dent BA III	14	7	4	_	_				
			•	•		_	_			

^{*) -} Subjective classification

Maria Ruth Alleoni

UNIVERSITY OF SASKATCHEWAN Saskatoon, Saskatchewan, Canada Department of Biology

1. Ethyl methanesulfonate induced mutations in maize.

To understand the genetic effects of radiations, the frequency of mutations induced by Υ -rays and ultraviolet light was reported in our earlier works following treatment of \underline{Su} pollen grains in maize. The present work is concerned with the mutations induced by ethyl methanesulfonate (EMS).

Mature pollen grains carrying the dominant gene (\underline{Su}) were spread in a monolayer on a round plastic plate. Each plate was then placed on a glass supporter inside a petri-dish containing 25 ml of 0.5% EMS solution at 30° \pm 2°C. The EMS solution was prepared in deionized distilled water without buffer before its application. The pollen was exposed to EMS vapor for 0.5, 1.0 and 1.5 hours. The treated pollen was then dusted on ears having the recessive gene (\underline{su}). After maturity, endosperms were scored for whole or chimeral (partial) mutations and data thus obtained are shown in Table 1. Comparison was made of the mutation rate of the treatments with control.

Table 1
Frequency of mutations at the sugary locus from EMS exposed pollen grains of maize

	No. of seeds tested	Mutation	Percent of		
Treatment		Whole	Chimeras	Total	chimeras
Control	2525	.04 <u>+</u> .03	.04 <u>+</u> .03	.08 <u>+</u> .05	50.0
EMS* 0.5 hr 1.0 1.5	9684 7751 8171	.05 ± .02 .05 ± .08 .05 ± .07	.32 ± .06 .45 ± .08 .59 ± .08	.37 ± .06 .50 ± .08 .64 ± .09	86.1 89.7 92.3

*EMS: 0.5%

Seed setting was not affected by EMS treatment. The dose response curve against mutation rate showed a non-linear relationship. This saturation effect is not due to the reduction of seed fertility. The frequency of whole mutations was not significantly increased by treatments. On the other hand, the frequency of chimeral mutations increased significantly with the prolongation of treatment hours. This predominance of chimeral mutations was more or less similar to that found by Neuffer and Ficsor (1963) and Chatterjee et al., (1965).

T. Mabuchi

T. J. Arnason