undetected by electrophoretic analysis. The presence of Class II and III type mutations offers strong support, along with the previously presented evidence, that this protein is specified by the $\underline{\operatorname{Sh}}_1$ gene, since qualitative and quantitative changes in the protein are associated with the appearance of the $\underline{\mathfrak{sh}}_1$ phenotype.

Prem S. Chourey

An effect of B chromosomes on crossing over in chromosome 5.

It was reported in last year's News Letter (p. 63) that B chromosomes might cause an increase in crossing over in the $\frac{A_2-Bt_1-Pr}{Bt_1}$ region of chromosome 5. This work was followed up during the summer of 1968, when plants of two related families (536 and 537) which were heterozygous for $\frac{A_2Bt}{2}$ Pr were root-tipped and scored for B chromosomes, then transplanted to the field and backcrossed as females and as males to a bt pr testers.

The results are shown below:-

			· · · · · ·	No. of	% Recombination			
Family no.	Used as:	No. of plants	No. of B's	kernels	A-Bt	Bt-Pr	Total	% increase
537	?	8 8 10	0 1 2	2897 2797 3197	5.9 6.9 8.8	15.9 18.1 21.7	21.8 25.0 30.5	15 40
536	ş	4 10 10	0 2 4	1529 3493 3527	8.2 9.6 10.7	23.0 22.3 25.3	31.2 31.9 36.0	2 15
537	O ³	9 8 10	0 1 2	4560 4505 5814	11.3 15.1 17.7	26.8 31.8 34.6	38.1 46.9 52.3	23 37
536	8	5 10 10	0 2 4	2764 4812 4829	13.4 18.1 23.6	26.0 35.8 37.6	39.4 53.9 61.2	37

The recombination values for the $\underline{\mathrm{Bt}}_{1}$ - $\underline{\mathrm{Pr}}$ region were obtained from the \underline{A}_2 kernels only, since \underline{a}_2 kernels lack color.

Although the data have not yet been statistically analyzed, both of the above families and the one mentioned last year showed increased

recombination for the A_2 - Bt_1 -Pr region in the megasporocytes when B chromosomes were present. Furthermore, it appears that the B chromosomes had a dosage effect. The increase in crossing over and the dosage effect in both the A_2 -Bt₁ and Bt_1 -Pr regions were more marked in the microsporocytes than in the megasporocytes and are similar to those obtained by Rhoades for the $\underline{C-Wx}$ region of Tp9 plants. In the latter case, however, there was a corresponding decrease in the recombination value for the adjacent $\underline{Yg}_2-\underline{C}$ region of chromosome 9, which would indicate a shift in the distribution of crossovers along the chromosome arm (cf. "Replication and Recombination of Genetic Material", pp. 229-241. Eds. W. J. Peacock & R. D. Brock. Austral. Acad. Sci., Canberra, 1968). Ayonoadu & Rees (Genetica 39:75) have reported indications of an altered distribution of chiasmata and have found an increase in the total number of chiasmata, due to B chromosomes in Black Mexican Sweet Corn. The increased recombination in the $\underline{A}_{2}-\underline{Bt}_{1}-\underline{Pr}$ region of chromosome 5 could thus be the result of a shift in the distribution of crossovers, an increase in the total amount of crossing over, or a combination of both. Paul Nel

Further studies on chromosome elimination induced by supernumerary B chromosomes.

In the 1967 Maize News Letter and in a paper appearing the same year in the Proc. Nat. Acad. Sci., data were presented showing a correlation between the number of B chromosomes and the rate of loss of the \underline{A}_1 allele in chromosome 3 at the second division of the microspore. In plants with low numbers of B's there was little or no loss of the \underline{A} marker while in individuals with higher numbers of B's this locus was eliminated in 10% or more of the sperm cells. The earlier data did not provide a good estimate of the dosage effect of B's on loss of the \underline{A} locus. Not all of the classes were represented and the data were fragmentary in some cases. Rather extensive data have since been obtained from a set of closely related plants in which the numbers of B chromosomes ranged from none to eight. The frequencies of F_1 endosperms exhibiting the recessive \underline{a} phenotype in crosses of \underline{a} \underline{a} \underline{o} \underline{v} \underline{A} \underline{A} \underline{o} where the pollen parents differed in numbers of B's are given below: