of 4.6% among the progeny, or in one kernel out of 21.8 (average). After counting chromosomes in root tips, eight plants out of a total of 121 had two supernumerary B⁴'s (see MNL 1967).

Among the \underline{Su} kernels, one out of 8.7 (average) is expected to have two $\underline{B4}$'s in the embryo.

Achille Ghidoni (*)

- (*) On leave from Istituto di Genetica, Università di Milano, Milano (Italy).
- 5. Location of the E_h esterase locus on chromosome 3.

The \underline{E}_{l_i} esterase gene in maize has five alleles. Four of these alleles $(\underline{E}_{l_i}, \underline{E}_{l_i}, \underline{E}_{l$

A series of translocations involving chromosome 9 was used to determine the location of the $\underline{E_{I_1}}$ locus in the maize genome. These are shown in Table 1. Each of the translocation stocks was homozygous for the waxy gene $(\underline{wx/wx})$ which is located approximately eleven crossover units from the centromere on the short arm of chromosome 9. Each of the translocation stocks was crossed with a stock which was normal with respect to chromosome constitution and which was homozygous for non-waxy $(\underline{wx/wx})$. The stocks carrying translocations T_{1-9c} , T_{6-9b} , T_{7-9a} and T_{8-9d} were crossed with plants which were $\underline{E_{1}}^{P}/\underline{E_{1}}^{P}$. The stocks carrying translocations T_{3-9c} , T_{4-9c} , T_{5-9a} and T_{3-9c} , T_{4-9c} , T_{5-9a} and T_{5-9a

Kernels derived from the series of crosses between the translocation heterozygotes (which were also heterozygous $\underline{wx/wx}$) and the stocks which were normal in chromosome constitution (and also homozygous $\underline{wx/wx}$) were then scored for waxy and non-waxy. These kernels were then germinated and root samples from seven day seedlings were run in electrophoresis in order to score for $\underline{E_4}$ esterase constitution. The results are shown in Table 2. As can be seen from the data, there was found to be a close linkage between the $\underline{E_4}$ locus and the \underline{wx} locus when chromosome 9 was involved in a translocation with chromosome 3. No appreciable linkage with \underline{wx} was observed when the translocation involved any of the other chromosomes in the maize genome. These results lead to the conclusion that the $\underline{E_4}$ gene is located on chromosome 3 rather close to the breakage point (.09 on the long arm of chromosome 3).

Table 2 Results of testcrosses made to determine the location of the $\underline{E_{I_i}}$ gene in the maize genome

	Res	ılts		
$vx = E_{i}^{F} / E_{i}^{F}$ $\frac{D+F}{127} wx$	<u>F Wx</u>	$\frac{D+F}{142}\frac{Wx}{}$	F wx 142	<u>Total</u> 544
$\times E_{i}^{F}/\underline{E}_{i}^{F}$ 170	143	25	11	348
E_{i}^{F}/E_{i}^{F} 6	11	7	10	34
$wx E_{i}^{F}/E_{i}^{F}$ 38	34	42	33	147
wx E, F/E, F 57	54	47	49	207
$\text{wx} \text{E}_{i}^{\text{F}} / \text{E}_{i}^{\text{F}}$ 3	2	4	3	12
ਲ ਬੋ±ਸ਼	<u>x D+F Wx</u> 85	<u>E+F Wx</u>	$\frac{D+F}{68} \frac{wx}{}$	Total 276
<u>E+F</u> <u>w</u>				Total
\(\frac{\text{wx}}{\text{E_1}} \frac{\text{F}}{\text{E_1}} \frac{\text{E}}{\text{F}} \frac{\text{E}}{\text{D}} \frac{\text{E}}{\text{T}} \frac{\text{D}}{7} \frac{\text{D} + \text{F}}{7} \frac{\text{D}}{\text{T}} \frac{\text{D}}{7} \tex	47 VX D WX 11	<u>D+F</u> <u>Wx</u> 7	D wx 7	160 <u>Total</u> 32
	127	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Table 1 Translocation stocks used in crosses designed to determine the location of the $\underline{\mathbf{E}}_L$ gene in the maize genome

Translocation	Breakage Points	E, Esterase Genotype
T _{1-9c}	(1s.48; 9L.22)	$\underline{\mathbf{E}_{I_{\mathbf{i}}}}^{\mathrm{D}}/\underline{\mathbf{E}_{I_{\mathbf{i}}}}^{\mathrm{D}}$
T _{2-9b}	(2s.18; 9L.22)	$\underline{\mathbf{E}_{I_{+}}}^{\mathbf{E}} / \underline{\mathbf{E}_{I_{+}}}^{\mathbf{E}}$
т _{3-9с}	(31.09; 91.12)	$\mathbf{E}_{j_{+}}^{\mathrm{D}}/\mathbf{E}_{j_{+}}^{\mathrm{D}}$
^T 4-9g	(4s.27; 9L.27)	$\mathbf{E_{J_{+}}^{E}}/\mathbf{E_{J_{+}}^{E}}$
^T 5-9a	(5L.69; 9S.17)	$\mathbf{E_{J_{+}}}^{\mathrm{D}}/\mathbf{\underline{E_{J_{+}}}}^{\mathrm{D}}$
^Т 6-9ь	(6L.10; 9S.37)	$\mathbf{E_{J_{+}}}^{\mathrm{D}}/\mathbf{E_{J_{+}}}^{\mathrm{D}}$
^T 7-9a	(7L.63; 9S.07)	$\mathbf{E_{J_{t}}}^{\mathrm{D}}/\mathbf{E_{J_{t}}}^{\mathrm{D}}$
T _{8-9d}	(8L.09; 9s.16)	$\underline{\mathbf{E}_{\mathbf{J}_{4}}}^{\mathrm{D}}/\underline{\mathbf{E}_{\mathbf{J}_{4}}}^{\mathrm{D}}$
^T 9-10b	(98.13; 108.40)	<u>E</u> , ^F / <u>E</u> , ^F

John W. Harris

6. Association of crossing over and production of unstable a alleles.

The a^p -D35 allele arose in two steps from an a_1 exposed to a_1 by a_1 allele a_1 and a_2 and a_1 exposed to a_2 allele a_1 and a_2 exposed to a_2 allele a_1 and a_2 exposed to a_2 allele a_2 exposed to a_2 allele a_3 exposed to a_4 and a_4 exposed to $a_$

male parents and the 3^h resulting ears were scanned for colored shrunken crossovers. One ear produced two <u>sh</u> kernels that were pale colored. With the exception of one <u>A sh</u> kernel, a possible contaminant, these were the only colored shrunken crossovers detected on the 3^h testcrossed ears. Some of the pale <u>sh</u> kernels are probably overlooked because of similarity to colorless <u>sh</u>. The two pale <u>sh</u> kernels mentioned above had fairly deep aleurone color. Both individuals proved to be heterozygous for the translocation; i.e. they arose by a double crossover in the F_1 . Self pollinations of the two plants gave ears segregating pale and colorless seeds, all of which were shrunken. Many of the pale seeds had one or two very small dots of color; these are apparent on <u>sh</u> seeds only after careful scrutiny, usually with a dissecting microscope. The original two kernels were not closely examined for dots, but the pale <u>Sh</u> kernels on the