2. The effect of X-rays on pollen fertility of maize. In the summer of 1965, a study on the effect of X-rays on pollen fertility of maize was carried out. Freshly collected pollen was irradiated with X-rays at three different doses, 1500r, 3000r and 4500r. This treated pollen was applied on the silks of an inbred maize strain homozygous for gl1. total of 21 plants were fertilized with the rayed polten; seven plants were fertilized with pollen rayed at a dose of 1500r, six plants with pollen rayed at a dose of 3000r, and eight plants with pollen rayed at a dose of 4500r. dition, five plants were fertilized with non-irradiated pollen and these plants were maintained as control. harvesting, conditions of the kernel sets of these plants were examined. It was found that as the radiation intensity on maize pollen increased, the per cent of kernel sets on the ears fertilized with this rayed pollen decreased. decrease was about linearly proportional to the increase of radiation intensity. For instance, the kernel sets on the ears of the control were 95% of the total ovules produced, while the kernel sets on the ears fertilized with pollen rayed at 1500r were 65 per cent, the kernel sets with pollen rayed at 3000r were 20 per cent, and those with pollen rayed at 4500r were only five per cent. The results are shown in Table 2. Table 2 Effect of X-rays on pollen fertility of maize (based on % of kernel sets) | Dose (r) | % of kernel sets | |----------|------------------| | 1500 | 65 | | 3000 | 20 | | 4500 | 5 | | Control | 95 | Y. C. Ting ## 3. The inheritance of B-chromosomes. Because of the study of mutagenic effects of B-chromosomes, an attempt was made to accumulate a large number of B's in individual maize plants. From the progeny of a selfed inbred maize plant, individuals possessing 3 B's were selected and self-fertilized in the summer of 1964. Bulked kernels