The frequency of plants with semi-sterile pollen was 8.75%, 21 out of 240. One plant was completely sterile. The occurrence of translocations between non-homologous chromosomes was thus very low if we accept the value of 8.75% as an estimate. Consequently, the frequency of translocations between homologous chromosomes must be very low--1/9 x 8.75% or ca. 1%. No attempt was made to select kernels preferentially from the semi-sterile ears or semi-sterile sectors of the X_1 ears. This would increase the frequency of translocations between non-homologues in the population, but it is probably true that translocations between homologues frequently do not produce semi-sterility--particularly those ones which are especially desired such as those producing duplications of the \underline{wx} locus. It is known that chromosomes deficient for much of the short arm of chromosome 9 are functional through the megagame tophyte. This method of obtaining duplications needs further examination. There is probably some difficulty in duplicating genes which are close to the centromere, such as \underline{y} , since a proximal break is required. G. G. Doyle ## 3. Chromosome 9 mapping. Enough 3-point testcrosses and 2-point data are finally available to order the loci provisionally. See Newsletters 33:78 and 32:100 for earlier data. Table 1 presents new 2-point testcross data, combinations with earlier samples, and information from 3-point testcrosses. Table 2 presents new 3-point data. Unquestioned orders are $\frac{Wx-D_3-Pg_{12}-Bb_2-Bf-Bm_4}{Bs_2-Gl_{15}-Bk_2-Bf-Bm_4}$ and $\frac{Wx-D_3-Ar-V-Bk_2}{Bs_2-Br-Bm_4}$; $\frac{Wx-Ms_2-Ar}{Bs_2-Ar}$ is indicated in some sketchy experiments. With addition of data for $\frac{Wc}{Bs_2}$ (Burnham, Newsletter 33:74), the most logical complete map is as follows: | Dŧ | ${\tt Yg}_2$ | C | Sh | Bz | Bp | | Wx | | Pg_{12} | |-----|--------------|------------------|----|-----------------|----|-----|----|-----|-----------------| | 0 | 7 | 26 | 29 | 31 | 44 | | 59 | 62 | 66 | | Mso | Ar V | G1 ₁₅ | | Bk_2 | | Wc | | | Bm ₄ | | 67 | Ar V 70 71 | 74 | | 83 | | 108 | | 138 | 142 | Several intervals and orders are still in doubt because of difficulties in isolating 3-point testers in these short intervals. The most uncertain placement is that of \underline{Ar} and \underline{V} in relation to \underline{Gl}_{15} . Although \underline{Gl}_{15} is easily classifiable, recombination tests with this marker have been very erratic; no definite pattern that would explain the variation has been seen. Coincidence data suggest that the centromere may be to the right of \underline{D}_3 , near \underline{Pg}_{12} . This would place \underline{D}_3 in the short arm, with centromere placement somewhere between the limits of Anderson and Randolph (2-3 units from \underline{Wx} , Genetics, 1945) and Rhoades and Dempsey (10-11 units, Newsletter 30:42, 51). Table 1. Recombination Data from Testcrosses for 2-point Intervals in Chromosome 9 | | | | | | | | | Recombi | | 3-point | |-----------------|------------------|-------|------------|-----|------------|---------------------------|--------------|---------|-------------------|---------| | Ž | Y | Phase | <u>X Y</u> | X X | <u>x Y</u> | \mathbf{x} \mathbf{y} | Total | Number | Percent | Sum | | Ar | Bk ₂ | CB | 248 | 69 | 66 | 5/15 | 625 | 135 | 21.6±1.6 | | | Ar | v | СВ | 1 | 22 | 20 | | 221 | | 0.9±0.9 | | | Ar | Wbx | СВ | 291 | 26 | 19 | 289 | 625 | 45 | 7.2±1.0 | | | Bf | Bk ₂ | RB | 125 | 229 | 198 | 92 | 644 | 217 | 33•7±1•9 | | | Bf | Bm _{l4} | RB | 11 | 343 | 276 | 14 | 6 717 | 25 | 3.9±0.8 | | | | | СВ | 185 | 138 | 102 | 219 | 6ևկ | 240 | 37•5 ± 1•9 | 38 | | Bk ₂ | Mx
Bm[t | СВ | 233 | 81 | 77 | 234 | 625 | 158 | 25 | 29 | | Bk ₂ | 47. | RB | 6 | 43 | 36 | 7 | 92 | 13 | 11ب | 15 | | | | 1417 | _ | 7- | | | 717 | 171 | 23.9±1.6 | | | n | CJ. | СВ | 58 | ı | Į, | 57 | 120 | 5 | 4 | | | 3 | ^{G1} 15 | RB | 0 | 99 | 65 | 1 | 165 | 1 | 1 | | | | | ı | v | • | - | | 285 | 6 | 2.1±0.8 | | Table 1 Recombination Data from Testcross for 2-point Intervals in Chromosome 9 (Cont'd) | | Re | combinatio | n Data fro | m Testcros | s for 2-po | int interv | | omosome 9 (
Recombination Number | nations | | 3-poi
Sum | |------------------|-----------------------|------------|------------|------------|------------|------------|-------|-------------------------------------|------------------|-----------|--------------| | x | Y | Phase | <u>x y</u> | <u>х у</u> | <u>x Y</u> | <u>x y</u> | Total | Number | Percer | <u>it</u> | Sun | | | Ms ₂ | СВ | 427 | 10 | 7 | 309 | 753 | 17 | 2 | * | | | 3 | 22 | RB | 5 | 102 | 75 | 3 | 185 | 88 | 4 | * | | | | | | | | | | 938 | 25 | 2.7± | D•5* | | | ¹ 3 | V | RB | 7 | 99 | 96 | 1 | 203 | 8 | 3.9± | 1.4 | | | - | Wx | CB | 825 | 23 | 28 | 649 | 1525 | 51 | 3 | | | | 3 | их | СВ | 533 | 11 | 13 | 381 | 938 | 2ોા | 3 | * | | | | | OD | 772 | | | | 2463 | 75 | 3•0 1 | 0.3 | | | ·¬ | Me | RB | 5 | 265 | 254 | 5 | 529 | 10 | 1.94 | 0.6* | | | 115 | Ms ₂ | RB | 1 | 79 | 70 | 2 | 152 | 3 | 2.0 | 1.1 | | | 1 ₁₅ | Pg ₁₂
V | RB | 0 | 20 | 16 | ı | 37 | 1 | 2.7 | ±2.7 | | | ³¹ 15 | | CB | 170 | 12 | 14 | 187 | 383 | 26 | 7 | | | | ^{G1} 15 | ₩x | СВ | 69 | 13 | 10 | 65 | 157 | 23 | 15 | | l | | | | СВ | 228 | կ2 | 50 | 209 | 529 | 92 | 17 | # | | | | | | 9 | 136 | 163 | 9 | 317_ | 18 | 6 | | | | | | RB | 7 | -رـــ | - - | | 1386 | 159 | 11.5 | ±0.9 | | ^{*}F_l used as male; heterofertilizations resolved. Table 1 Recombination Data from Testcross for 2-point Intervals in Chromosome 9 (Cont'd) | | | | | | | | | Recombi | | 3-point | |-------------------------|------------------|-------|-----|------|-------------------------|------------|-------|---------------|----------|---------| | $\overline{\mathbf{x}}$ | Y | Phase | XY | Хy | $\mathbf{x} \mathbf{Y}$ | <u>x y</u> | Total | Number | Percent | Sum | | Ms ₂ | Pg ₁₂ | RB | 14 | 182 | 224 | 0 | 410 | 4 | 1.0±0.5* | | | Ms ₂ | Wx | CB | 418 | 16 | 21 | 298 | 753 | 37 | 5 * | 5 | | | | RB | 75 | 450 | 530 | 69 | 1124 | 1 /1/1 | 13 * | 14 | | | | | | | | | 1877 | 181 | 9.6±0.7* | | | Pg ₁₂ | Wх | CB | 68 | 3 | 6 | 75 | 152 | 9 | 6 | | | | | CB | 203 | 25 | 17 | 165 | 410 | 42 | 10 * | | | | | | | | | | 562 | 51 | 9.1±1.2 | | | ٧ | Wix | RB | 10 | 109 | 111 | 10 | 5/10 | 20 | 8 | 9 | | | | СВ | 913 | 6بلد | 1),6 | 891 | 2096 | 292 | 114 | | | | | | | | | | 2336 | 312 | 13.4±0.7 | | $^{{}^{*}}F_{1}$ used as male; heterofertilizations resolved. Table 2 3-Point Testcrosses in Chromosome 9 | | | Dog 1 | Reg. 2 | 1-2 | Total | | |--|--------------|--|--|--------------|-------|--| | F ₁ | Parental | Reg. 1 | | | | | | + + gl ₁₅ | 67 73
140 | 6 3
9 | $egin{array}{cccc} 1 & & 2 & \\ & 3 & & \end{array}$ | 0 0 | 152 | | | vx pg ₁₂ * | 2.00 | 5.9 ± 1.9 | 2.0 ± 1.1 | c = 0 | | | | + + <u>+</u> | 55 50 | 7 3 | 1 4 | 0 0 | 120 | | | $\frac{+}{\text{wx}} \frac{+}{\text{d}_3} \frac{+}{\text{gl}_{15}}$ | 105 | 10 | 5 | - 0 | | | | | | 8.3 ± 2.5 | 4.2 ± 1.8 | C = U | | | | + + gl ₁₅ | 96 63 | 2 3 | 0 1 | | 165 | | | wx d ₃ + | 159 | 5 | | | | | | | | 3.0 ± 1.3 | 0.6 ± 0.6 | c = 0 | | | | + + V | 96 94 | , 2 3 | 7 1 | 0 0 | 203 | | | $\frac{+}{\text{wx}} \frac{+}{\text{d}_3} \frac{\text{v}}{\text{+}}$ | 190 | $\begin{smallmatrix}5\\2.5&\underline{\star}&1.1\end{smallmatrix}$ | 8
3.9 <u>+</u> 1.4 | $0 \\ c = 0$ | | | | ተ ተ <i>ተ</i> | 230 226 | | 61 63 | | 625 | | | wx ar bk2 | 456 | | 124 | | | | | 2 | 100 | 5.44 | 19.84 | 1.76 | | | | | | 7.2 <u>+</u> 1.0 | 21.6 ± 1.6 | c = 1.1 | | | | + + + | 418 29 | 8 11 9 | | | 75 | | | wx d ₃ ms ₂ | 716 | 20 | 17 | 0 | | | | | | 2.7 ± 0.6 | 2.3 ± 0.5 | c = 0 | | | | + + ms ₂ | 100 7 | 3 2 2 | 5 3 | | 18 | | | wx d ₃ + | 173 | 4 | 8 | 0 | | | | • | | 2.2 ± 1.1 | 4.3 ± 1.5 | c = 0 | | | | + ms ₂ + | 227 20 | 7 47 38 | 3 4 | | 52 | | | $\overline{wx + gl_{15}}$ | 434 | | 7 | 3 | | | | | | 16.07 | 1.32 | | | | | | | 16.6 ± 1.6 | 1.9 ± 0.6 | c = 1.8 | | | | bk ₂ + bm ₄ | 219 1 | 84 124 92 | 10 14 | | 6 | | | + Bf + | 403 | 216 | 24 | | | | | | | 33.54 | 3.73 | .16 | | | | | | 33.7 ± 1.9 | 3.9 <u>+</u> 0.8 | c = 0.1 | | | | \mathbf{F}_{1} | | Parental | | Reg. l | | Reg. 2 | | 1-2 | | Total | | |------------------------------|-----------------|-----------|-----------|--------|-------------------------|----------|------------------------|-----|----------------|-------|--| | + + 1
wx pg ₁₂ | ns ₂ | 200
36 | 165
35 | | 24
1
<u>+</u> 1.5 | 3
1.0 | 0
3
<u>+</u> 0.5 | | 0
1
.2.4 | 410 | | | + + V wx ar + l | | 22
(11 | 20
10) | | | 1 | 1
<u>+</u> 0.9 | | | 111 | | \underline{Ar} is between T1-9a and T1-9c (9L.15 and 9L.22); \underline{Bk}_2 is proximal to \underline{TB} -9a (9L.5); \underline{Bf} is distal to T4-9₅₇₈₈ (9L.82) and probably to T5-9₇₂₀₅ (9L.90) according to duplication-deficiency tests. E. H. Coe, Jr. ## 4. Deletions of B' and chromosome 2 markers. Pollen of +B' was x-rayed (1,000-2,000 r) and used on marked B and b ($gl_{2}+/gl_{2}sk$). Zygotes from the hybrids +B' x gl B sk and +B' x gl b sk were x-rayed (1,000-2,000 r) at 24 to 52 hours after pollination. The resulting individuals were examined for exceptional plant color and loss of Gl_{2} . Exceptions were classified for all markers, checked for pollen sterility, and progeny-tested when possible. Hemizygotes for Gl B have a distinctive morphology (compact, club-like tassel and zigzag Gl b that helped to distinguish exceptions. | Cross | Irradiated | 1 | | Examined | | | | |--------------------|------------|-------|-----------|----------|----|---|--------| | | | Gl B' | Gl B' Sk | Gl | B¹ | t | Number | | B x B ¹ | pollen | 23 | 4 | 4 | 0 | 0 | 3200 | | b x B [†] | pollen | 20 | i | 3 | 0 | 0 | 1100 | | B' x B | zygotes | 11 | $ar{f 2}$ | 6 | 0 | 0 | 1700 | | B' x b | zygotes | 5 | 0 | 2 | 0 | 0 | 350 | Loss of \underline{B} ' is invariably accompanied by loss of \underline{Gl} (distal to \underline{B}). Loss of \underline{Gl} is usually accompanied by loss of \underline{B} ' (exceptions are morphologically distinct from \underline{Gl} \underline{B} hemizygotes and are attributable to breakage between \underline{Gl} and \underline{B} '). Zygotes of \underline{B} '/ \underline{B} constitution do not show conversion of \underline{B} up to 52 hours after pollination. \underline{B} ' is refractory to x-rays except by deletion. \underline{B} ' must be entirely chromosomal. The conversion or paramutation event is not immediate at fertilization; it may be as late as meiosis. E. H. Coe, Jr.