The frequency of plants with semi-sterile pollen was 8.75%, 21 out of 240. One plant was completely sterile.

The occurrence of translocations between non-homologous chromosomes was thus very low if we accept the value of 8.75% as an estimate. Consequently, the frequency of translocations between homologous chromosomes must be very low--1/9 x 8.75% or ca. 1%. No attempt was made to select kernels preferentially from the semi-sterile ears or semi-sterile sectors of the X_1 ears. This would increase the frequency of translocations between non-homologues in the population, but it is probably true that translocations between homologues frequently do not produce semi-sterility--particularly those ones which are especially desired such as those producing duplications of the \underline{wx} locus. It is known that chromosomes deficient for much of the short arm of chromosome 9 are functional through the megagame tophyte.

This method of obtaining duplications needs further examination. There is probably some difficulty in duplicating genes which are close to the centromere, such as \underline{y} , since a proximal break is required.

G. G. Doyle

3. Chromosome 9 mapping.

Enough 3-point testcrosses and 2-point data are finally available to order the loci provisionally. See Newsletters 33:78 and 32:100 for earlier data. Table 1 presents new 2-point testcross data, combinations with earlier samples, and information from 3-point testcrosses. Table 2 presents new 3-point data. Unquestioned orders are $\frac{Wx-D_3-Pg_{12}-Bb_2-Bf-Bm_4}{Bs_2-Gl_{15}-Bk_2-Bf-Bm_4}$ and $\frac{Wx-D_3-Ar-V-Bk_2}{Bs_2-Br-Bm_4}$; $\frac{Wx-Ms_2-Ar}{Bs_2-Ar}$ is indicated in some sketchy experiments. With addition of data for $\frac{Wc}{Bs_2}$ (Burnham, Newsletter 33:74), the most logical complete map is as follows:

Dŧ	${\tt Yg}_2$	C	Sh	Bz	Bp		Wx		Pg_{12}
0	7	26	29	31	44		59	62	66
Mso	Ar V	G1 ₁₅		Bk_2		Wc			Bm ₄
67	Ar V 70 71	74		83		108		138	142

Several intervals and orders are still in doubt because of difficulties in isolating 3-point testers in these short intervals. The most uncertain placement is that of \underline{Ar} and \underline{V} in relation to \underline{Gl}_{15} . Although \underline{Gl}_{15} is easily classifiable, recombination tests with this marker have been very erratic; no definite pattern that would explain the variation has been seen.

Coincidence data suggest that the centromere may be to the right of \underline{D}_3 , near \underline{Pg}_{12} . This would place \underline{D}_3 in the short arm, with centromere placement somewhere between the limits of Anderson and Randolph (2-3 units from \underline{Wx} , Genetics, 1945) and Rhoades and Dempsey (10-11 units, Newsletter 30:42, 51).

Table 1.

Recombination Data from Testcrosses for 2-point Intervals in Chromosome 9

								Recombi		3-point
Ž	Y	Phase	<u>X Y</u>	X X	<u>x Y</u>	\mathbf{x} \mathbf{y}	Total	Number	Percent	Sum
Ar	Bk ₂	CB	248	69	66	5/15	625	135	21.6±1.6	
Ar	v	СВ	1	22	20		221		0.9±0.9	
Ar	Wbx	СВ	291	26	19	289	625	45	7.2±1.0	
Bf	Bk ₂	RB	125	229	198	92	644	217	33•7±1•9	
Bf	Bm _{l4}	RB	11	343	276	14	6 717	25	3.9±0.8	
		СВ	185	138	102	219	6ևկ	240	37•5 ± 1•9	38
Bk ₂	Mx Bm[t	СВ	233	81	77	234	625	158	25	29
Bk ₂	47.	RB	6	43	36	7	92	13	11ب	15
		1417	_	7-			717	171	23.9±1.6	
n	CJ.	СВ	58	ı	Į,	57	120	5	4	
3	^{G1} 15	RB	0	99	65	1	165	1	1	
		ı	v	•	-		285	6	2.1±0.8	

Table 1

Recombination Data from Testcross for 2-point Intervals in Chromosome 9 (Cont'd)

	Re	combinatio	n Data fro	m Testcros	s for 2-po	int interv		omosome 9 (Recombination Number	nations		3-poi Sum
x	Y	Phase	<u>x y</u>	<u>х у</u>	<u>x Y</u>	<u>x y</u>	Total	Number	Percer	<u>it</u>	Sun
	Ms ₂	СВ	427	10	7	309	753	17	2	*	
3	22	RB	5	102	75	3	185	88	4	*	
							938	25	2.7±	D•5*	
¹ 3	V	RB	7	99	96	1	203	8	3.9±	1.4	
-	Wx	CB	825	23	28	649	1525	51	3		
3	их	СВ	533	11	13	381	938	2ોા	3	*	
		OD	772				2463	75	3•0 1	0.3	
·¬	Me	RB	5	265	254	5	529	10	1.94	0.6*	
115	Ms ₂	RB	1	79	70	2	152	3	2.0	1.1	
1 ₁₅	Pg ₁₂ V	RB	0	20	16	ı	37	1	2.7	±2.7	
³¹ 15		CB	170	12	14	187	383	26	7		
^{G1} 15	₩x	СВ	69	13	10	65	157	23	15		l
		СВ	228	կ2	50	209	529	92	17	#	
			9	136	163	9	317_	18	6		
		RB	7	-رـــ	- -		1386	159	11.5	±0.9	

^{*}F_l used as male; heterofertilizations resolved.

Table 1

Recombination Data from Testcross for 2-point Intervals in Chromosome 9 (Cont'd)

								Recombi		3-point
$\overline{\mathbf{x}}$	Y	Phase	XY	Хy	$\mathbf{x} \mathbf{Y}$	<u>x y</u>	Total	Number	Percent	Sum
Ms ₂	Pg ₁₂	RB	14	182	224	0	410	4	1.0±0.5*	
Ms ₂	Wx	CB	418	16	21	298	753	37	5 *	5
		RB	75	450	530	69	1124	1 /1/1	13 *	14
							1877	181	9.6±0.7*	
Pg ₁₂	Wх	CB	68	3	6	75	152	9	6	
		CB	203	25	17	165	410	42	10 *	
							562	51	9.1±1.2	
٧	Wix	RB	10	109	111	10	5/10	20	8	9
		СВ	913	6بلد	1),6	891	2096	292	114	
							2336	312	13.4±0.7	

 $^{{}^{*}}F_{1}$ used as male; heterofertilizations resolved.

Table 2
3-Point Testcrosses in Chromosome 9

		Dog 1	Reg. 2	1-2	Total	
F ₁	Parental	Reg. 1				
+ + gl ₁₅	67 73 140	6 3 9	$egin{array}{cccc} 1 & & 2 & \\ & 3 & & \end{array}$	0 0	152	
vx pg ₁₂ *	2.00	5.9 ± 1.9	2.0 ± 1.1	c = 0		
+ + <u>+</u>	55 50	7 3	1 4	0 0	120	
$\frac{+}{\text{wx}} \frac{+}{\text{d}_3} \frac{+}{\text{gl}_{15}}$	105	10	5	- 0		
		8.3 ± 2.5	4.2 ± 1.8	C = U		
+ + gl ₁₅	96 63	2 3	0 1		165	
wx d ₃ +	159	5				
		3.0 ± 1.3	0.6 ± 0.6	c = 0		
+ + V	96 94	, 2 3	7 1	0 0	203	
$\frac{+}{\text{wx}} \frac{+}{\text{d}_3} \frac{\text{v}}{\text{+}}$	190	$\begin{smallmatrix}5\\2.5&\underline{\star}&1.1\end{smallmatrix}$	8 3.9 <u>+</u> 1.4	$0 \\ c = 0$		
ተ ተ <i>ተ</i>	230 226		61 63		625	
wx ar bk2	456		124			
2	100	5.44	19.84	1.76		
		7.2 <u>+</u> 1.0	21.6 ± 1.6	c = 1.1		
+ + +	418 29	8 11 9			75	
wx d ₃ ms ₂	716	20	17	0		
		2.7 ± 0.6	2.3 ± 0.5	c = 0		
+ + ms ₂	100 7	3 2 2	5 3		18	
wx d ₃ +	173	4	8	0		
•		2.2 ± 1.1	4.3 ± 1.5	c = 0		
+ ms ₂ +	227 20	7 47 38	3 4		52	
$\overline{wx + gl_{15}}$	434		7	3		
		16.07	1.32			
		16.6 ± 1.6	1.9 ± 0.6	c = 1.8		
bk ₂ + bm ₄	219 1	84 124 92	10 14		6	
+ Bf +	403	216	24			
		33.54	3.73	.16		
		33.7 ± 1.9	3.9 <u>+</u> 0.8	c = 0.1		

\mathbf{F}_{1}		Parental		Reg. l		Reg. 2		1-2		Total	
+ + 1 wx pg ₁₂	ns ₂	200 36	165 35		24 1 <u>+</u> 1.5	3 1.0	0 3 <u>+</u> 0.5		0 1 .2.4	410	
+ + V wx ar + l		22 (11	20 10)			1	1 <u>+</u> 0.9			111	

 \underline{Ar} is between T1-9a and T1-9c (9L.15 and 9L.22); \underline{Bk}_2 is proximal to \underline{TB} -9a (9L.5); \underline{Bf} is distal to T4-9₅₇₈₈ (9L.82) and probably to T5-9₇₂₀₅ (9L.90) according to duplication-deficiency tests.

E. H. Coe, Jr.

4. Deletions of B' and chromosome 2 markers.

Pollen of +B' was x-rayed (1,000-2,000 r) and used on marked B and b ($gl_{2}+/gl_{2}sk$). Zygotes from the hybrids +B' x gl B sk and +B' x gl b sk were x-rayed (1,000-2,000 r) at 24 to 52 hours after pollination. The resulting individuals were examined for exceptional plant color and loss of Gl_{2} . Exceptions were classified for all markers, checked for pollen sterility, and progeny-tested when possible. Hemizygotes for Gl B have a distinctive morphology (compact, club-like tassel and zigzag Gl b that helped to distinguish exceptions.

Cross	Irradiated	1		Examined			
		Gl B'	Gl B' Sk	Gl	B¹	t	Number
B x B ¹	pollen	23	4	4	0	0	3200
b x B [†]	pollen	20	i	3	0	0	1100
B' x B	zygotes	11	$ar{f 2}$	6	0	0	1700
B' x b	zygotes	5	0	2	0	0	350

Loss of \underline{B} ' is invariably accompanied by loss of \underline{Gl} (distal to \underline{B}). Loss of \underline{Gl} is usually accompanied by loss of \underline{B} ' (exceptions are morphologically distinct from \underline{Gl} \underline{B} hemizygotes and are attributable to breakage between \underline{Gl} and \underline{B} '). Zygotes of \underline{B} '/ \underline{B} constitution do not show conversion of \underline{B} up to 52 hours after pollination. \underline{B} ' is refractory to x-rays except by deletion.

 \underline{B} ' must be entirely chromosomal. The conversion or paramutation event is not immediate at fertilization; it may be as late as meiosis.

E. H. Coe, Jr.