Frequency of crossovers from the cross $\underline{a} = \underline{sh}/\underline{a^m} = \underline{Sh} \times \underline{a^s} = \underline{sh}$.

•	Total No.	α a ^m Sh			a ^m sh or a sh		T co	
Control	3628	0	0	0	2	0	2	.00055
EDTA	4035	0	4	3	3	3	13	•0032

4. Response of 2 alleles of an to gibberellic acid.

Plants that are homozygous and normally do not shed much pollen because the anthers remain encased in the glumes. Several an individuals were treated at a stage comparable to shedding in a normal plant, by rubbing a spot at the base of the tassel with a glass rod coated with a lanolin paste containing 1.25% gibberellic acid. Within less than twenty-four hours that portion of the tassel immediately above the region touched with the paste appeared as a sector of normally expressed anthers that shed normal pollen. The remainder of the tassel continued to have tightly-closed florets and produced no pollen. The effect of the treatment appeared to be that of lengthening of the filaments and opening of the glumes. Similar treatment was applied to plants that were homozygous for another allele an6923 (a radiation induced mutant associated with bz2). The treated plants showed an elongation of tassel parts but failed to extrude any anthers. Careful examination showed that the anthers were empty and beginning to degenerate.

M. G. Nuffer

5. Chromosome 9 mapping.

Data has been accumulated for incompletely placed factors as follows:

Genes XY	Phase	XY	<u> </u>	<u>x</u> Y	<u>xy</u>	Total	Recombination
Ar Bk ₂	RS	227	130	110	.1	468	, 9 ,
Ar Bm ₄	RS	222	60	69	24	369	19 met 2 (55 m.) 12
Ar Ms ₂	RS	100	46	44	0	190	<15
Ar Wx	CS	477	32	41	121	671	12
Au Cr	CS	32	7	1	9	49	12
Bf Bk2	RS	141	41	60	8	250	39
Bf Bm ₄	RS	117	65	68	. 0	250	<11
Bf Ms ₂	RS	157	55	46	7	265	38
Br Wx	CS	171	48	38	18	275	43
Bk Gl ₁₅	RS	85	24	32	0	141	< 22