:	*	•	Cons	titı	<u>ition</u>	Pericarp Shee	n
(A ₁ A	2 ^{Bz} l	CR)	•	Pr pr		yes occasional	
			aı	\mathbf{Pr}	in	yes	,
• • • • • • • • •			aı	pr	in .	occasional	
			a2	Pr	in :	yes	• .
			bzl	Pr	in	yes	
	· · ·	•	c	Pr	in	no	٠.
			Ci	Pr	in.	no	
			r	Pr	in	no	

These interactions can be interpreted simply as indicating that \underline{C} and \underline{R} actions precede the effects of \underline{in} , assuming that a diffusible substance is produced in excess in \underline{in} kernels, and that this substance develops into a brown pigment (not anthocyanin) when it enters the pericarp. It is suggested that \underline{C} and \underline{R} are essential for the production of this substance.

A logical construction for the sequence of action, using the available information, is (C, R); In; A_1 ; (Bz_1, A_2) . The position of Pr is not clear, but probably preceding A_2 , at least.

4. <u>High-haploid line</u>.

Further data on frequency in self progenies of the two sources of stock 6 (see News Letter 30: 98, 1956) were obtained this year:

Stock 6 Selfs

Year	<u>Haploids</u>	Total	% Haploids
1955 1956	15 36	760 1,184	1.97** 3.04
Both years	51	1,944	2.62**
	. (Нар.	X sib) Selfs	
1955 1956	35 156	1,222 4,540	2.86 3.44
Both years	191	5,762	3.31
Grand Total	242	7,706	3.14

^{**} Highly sign. diff. from grand total.

The effect of background is still not clear, but may be slight (note 1956 data alone).

Outcross tests clearly show a high frequency of maternal haploid parthenogenesis, but not of the same magnitude as in self progenies:

Stock 6 (Rg) X Rr

Year	<u>Haploids</u>	<u>Total</u>	% Haploids
1955	6	1,085	0.55
1956	186	21,196	0,88
Both years	192	22,281	0.86

The percentage above may be a little below the true frequency, as it has been found that stock 6 occasionally shows a weak \underline{R}^r expression. For \underline{R}^r X stock 6, however, no difficulty in classification was experienced:

Rr X stock 6

Rg haploids	Total	
0		6,946

No sperm-derived haploids were found. Haploid androgenesis probably does not contribute significantly to the high percentage of haploids in selfs.

A very high frequency of heterofertilization occurs in the line, and may be associated with the production of haploids.

5. Test for non-homologous crossing-over in translocation heterozygotes.

The test reported last year is negative. The single case proved to be spurious.

6. Ds and sticky.

Cross:

on.

$$\frac{c \text{ sh wx}}{c + + \text{ st}}$$
, $\frac{+}{st}$, ac $X \frac{C + + Ds}{c + + \text{ st}}$, ac

compared with:

$$\frac{c \sin wx}{c + +}, \frac{+}{st} \qquad \frac{C + +}{c + +}, \frac{+}{st}$$