2. <u>A case of "spreading effect" involving the A_1 locus</u>.

Among the mutants arising from a_1^{p} , one (a_{114}^{p}) exhibited simultaneous alterations at the A_1 locus as well as at an adjacent locus. The allele arose as a single, light pale, self-colored, exceptional kernel in the cross a_1^{p} $Sh_2/a_1^{p} Sh_2 \times a_1 Sh_2/a_1 Sh_2$. When the kernel was grown and the plant selfpollinated, the resulting ear demonstrated that the new pale type was inherited in the typical Mendelian fashion, and that the new type could not have been the result of a foreign pollen grain. The kernels from this ear fell into an approximate $3(a_{1}^{P} + Sh_{2})$ to $1(a_{1} + Sh_{2})$ ratio. A fraction of the pale kernels were germless while only two germless kernels were found in the $a_1 sh_2$ class. In addition when the germed kernels were grown, some of the seedlings were both devoid of chlorophyll and markedly deformed. This aberrant seedling type was with one exception, confined to the $a_{1 L14}^{P}$ Sh₂ class. Furthermore, approximately 40 mature plants have been grown from the $a_{1}^{P}_{L14}$ Sh₂ kernel class from self-pollinated heterozygotes and in every case these plants have proved to be heterozygous. Table 1 gives the results of a classification of kernel and seedling types in the progenies of two self pollinated plants heterozygous for $a_1^{P}_{L14}$ Sh₂ and a_1 sh₂.

heterozygotes.	
Kernel Classification	Seedling Classificatio

Table 1. Kernel and seedling frequencies among the progenies of selfed

	Kernel Classification			Seedling Classification			
				Deformed			
Kernel	Number	Germless	Germed	Number	Albino	Normal	
Phenotype	Classified	Kernels	Kernels	Classified	Seedlings	Seedlings	
a_{L14}^{P} Sh ₂	308	65	243	216	27	189	
a sh ₂	117	2	115	72	1	71	

It is clear that a gene or closely linked genes control these abnormal kernel and seedling types, for when they are considered together the aberrant types make up one-fourth of the progeny. Furthermore, the single exceptional seedling found in the $a_1 \ sh_2$ class and possibly the two germless $a_1 \ sh_2$ kernels indicate that crossing-over may occur between A_1 and the gene controlling these deformed seedlings.

Several explanations are possible for the results described above. Two simultaneous independent point mutations involving these two genes is highly improbable. A deficiency of the chromosomal region including the two linked genes is possible. However, the detection of crossing-over between the two genes rules out this hypothesis. The results may be explained by a spreading effect, such as that found by McClintock, which is caused by the inhibition of closely linked genes. The available evidence supports the last hypothesis.

The new gene controlling albinism has proved to be not allelic with W of Stadler and Roman, for plants of the constitution $a_1^P_{L14}$ Sh₂/a - x_1 are normal.