MAIZE GENETICS COÖPERATION

NEWS LETTER

21

March 1, 1947

The data presented here are not to be used in publications without the consent of the authors.

> Department of Plant Breeding Cornell University Ithaca, N. Y.
Page
I. Feports from Cobperators 1
Califormin Institute of Technology 1
Columbia University 3
Comnecticut Arriculturnl Experiment Station 5
Cornell University 7
Florica Agrioultural Experiment Station 12
Hervard University 19
Fentucky hgricultural Experiment Station and United Stetes Depertrent of Aericulture 22
Missouri Botanienl Gercien und Pionoer Hi-BreG Com Cmreny 23
Fioneor Laboratory, Fionoor His-Brod Corn Company 25
Princotor University 26
Texas Agricultural Experiment Station 29
United States Deprotment of Agriculture 33
United States Department of Aericulture and Cornell University 33
University of Minnesota 35
University of North Carolina 39
University of S. Faulo 42
University of Woshington 48
University of Wisconsin. 51
II. Maize Publications 52

Eh. note: A change in size of page from previous
issues wos necessitated by a shortage of
mineograph paper.

I. REPORTS FROM COOPERATORS

California Institute of Technology Pasadena, California

Alignment of translocetions on chromosome 2.

Translocation	Cytological position	- Linkage	Number of plants
2-3a		near lg_{1}	Burnham
2-6b	5.75	$\mathrm{EI}_{2}-3.9-\mathrm{T}-0.9 \mathrm{mB}$	2008, 3152
2-3c	S. 65	B-0.5-T-4.9-sk	3317, 183
$1-2 \mathrm{~b}$	S. 6	B-5.3-T-1.4-sk	1176, 1176
2-9a	S. 65	sk ± 0.5	784
2-3d	S	sk-8.5-T-12.5-v/4	447, 939
$2-9 \mathrm{~b}$	S.1	$\mathrm{ts}_{1}-5.0-\mathrm{T}-7.8-\mathrm{v}_{4}$	662, 1542
2-5a	1.1	$\mathrm{T}-7.3-\mathrm{v}_{4}$	Rhoades
2-4d	L	$t s 1-9.6-T-8.8-v_{4}$	125, 1059
$2-5 b$	\pm	$\mathrm{T}-5.0-\mathrm{v}_{4}$	185
2-10a	L. 2	$t_{5} 1-13.5-\mathrm{T}-6.5-v_{4}$	384, 1145
$2-7 b$	L. 25	$\mathrm{tsin}^{1}-15.3-\mathrm{T}-5.4-\mathrm{v}_{4}$	470, 1091
2-6d	L.3-	$t s s_{1}-26.6-T-4 \cdot 2-v_{4}$	403, 754
2-6c	L. 3	$\mathrm{ts}_{1}-12.3-\mathrm{T}-1.7-\mathrm{v}_{4}$	594, 1869
1-2(17)		$\mathrm{ts}_{1}-10.7-\mathrm{T}-1.1-\mathrm{v}_{4}$	375, 481
2-48	L. 3	$\mathrm{ts} 1^{-12.9-T-1.0-v / 4}$	395, 1522
1-2c	L. 3	$t s s^{\text {a }}-8.5-T-0.3-v_{4}$	649, 1264
2-6a	L. 3	$\mathrm{V}_{4} \pm$ 土. $]$	354
2-7c	L. $3+$	$\mathrm{ts}_{1}-\mathrm{V}_{4}-1.0-\mathrm{T}$	592
2-3b		$\mathrm{ts}_{1}-\mathrm{V}_{4}-4.0-\mathrm{T}$	1412
$2-4 b$	L. 6	$t s s_{1}-\mathrm{v}_{4}-5.6-\mathrm{T}$	1207
2-4c	L. 8	$\mathrm{v}_{4}-19.0 \mathrm{mT}-34.2-\mathrm{oh}$	1098, 1317
2-4(a-29)		$\mathrm{v}_{4}-22.3-\mathrm{T}$	622
Inv.	L..$^{+}$+	$\mathrm{v}_{4}-34.5-\mathrm{T}-30.4-\mathrm{ch}$	447, 4,47

E. G. Anderson

Ira W. Clokey

California Institute of Technology, Pasaciena, California
Linkage and cytological data on translocations, to add to the list reported in the 1946 News letter, pages 34 and 35

Translocation	$\begin{aligned} & \text { Ohromo- } \\ & \text { some } \end{aligned}$	Locus of break	Linkage	Chromosome	Locus of break	Linkage
2-3d	2	S.	sk-8.5-T-12.5-v ${ }_{4}$	3	L.	na-13.0-T-7.1-a
2-4a	2	L. 3	$\mathrm{ts}_{1}-12.9-\mathrm{T}-10-\mathrm{v}_{4}$	4	L. 2	su-3.3-T-14.0-Tu
2-4b	2	I. 6	$\mathrm{ts}_{1}-\mathrm{v}_{4}-5.6-\mathrm{T}$	4	L. 4	Tu-gI3-15.0-T
2-4c	2	L. 8	$\mathrm{V}_{4}-19.0-\mathrm{T}-34.2-\mathrm{ch}$	4	S. 1	su-9.1-T-30.8-Tu
2-4d	2	I	ts $1-9.6-T-8.8-v_{4}$	4		near Tu
2-4(a-29)	2	I	$\mathrm{ts}_{1}-\mathrm{F}_{4}-22.3-\mathrm{T}$	4		su-5.6-T-18.8-Tu
2-5a	2	L. 1	B-T-7.3- v_{4}	5	S. 1	T-1.5-bm -pr
2-5b	2	L.	B-T-5.0-v/4	5		bmi ${ }^{\text {a }}$.
2-6a	2	L. 3	$\mathrm{V}_{4}+1.1$	6	S. 1	T-9.6-P1-sm
2-6b	2	S. 75	$8 \mathrm{I}_{2}-3 \cdot 9-\mathrm{T}-0.9-\mathrm{B}$	6	I. 65	P1-Sm-3.3-T
2-6c	2	L. 3	$t_{s} \mathrm{j}-12.3-\mathrm{T}-1.7-\mathrm{v}_{4}$	6	L. 3	near
2-6d	2	L. 3	$\mathrm{ts}_{1}-26.6-\mathrm{T}-1.1-\mathrm{v}_{4}$	6	L. 3	near x
2-7b	2	$\pm .25$	$\mathrm{ts}_{1}-15.3-\mathrm{T}-5.4-\mathrm{v}_{4}$	7	L. 2	T-1.3-ramgl
2-7c	2	L. 3	$\mathrm{ts}_{1}-\mathrm{V}_{4}-1.0-\mathrm{T}$	7	I. $1+$	$\mathrm{T}-5.7-\mathrm{ra}-\mathrm{gl}]_{1}$
2-9a	2	S. 65	sk土0.5	9	L. 65	C-wx-30.7-T
2-9b	2	S. 1	$\mathrm{ts}_{2}-5.0-\mathrm{T}-7.3-\mathrm{v}_{4}$	9	L. 2	C-wx-7.5-T
2-10a	2	L. 2	$\mathrm{ts}_{1}-13.5-\mathrm{T}-6.5-\mathrm{v}_{4}$	10	L. 7	$\mathrm{T}-1.9-\mathrm{g}-\mathrm{R}$

Columbia University
New York, New York

1. A new mutable gene.

Mutable alleles have been found at the P, Bt, and Wx loci. These mutable alleles may be described as recessives with a high mutation rate to the dominant allele. In adcition there is the genically induced matability of recessive a by the Dt gene. The effect of Bh on recessive o probably belongs in this category. A new type of mutable allele has recently been found. A dominant A : allele mutates with high frequency in both somatic and germinal tissue to an intermediate allele producing light aleurone color and rec-brownish plant color. The effect on pericarp color has not yet been determined. An example of the matation rate of this mutable A allele (designated A^{m}) is as follows: The oross of a $x A^{\text {m }}$ gave 74 kernels with self-colored aleurone, 61 kernels mosaic for deep and light colored aleurone, and 24 with light colored aleurone, At least two different intermediate alleles, differing in intensity of color in aleurone and plant, have been found.

2. Directed segregation.

A derived strain from a complex translocation involving chromosomes 5 and 3 has the following constitution: Nine normal bivalents, including chromosome 5 , and a chain of three consisting of a normal chromosome 3, a short arm, and a long arm of chromosome 3. When this chain of three is present in plants with a certain genetic background, the orientation of the chain on the metaphase I spindle is approximately randomi.e., orientation of the chain leading to alternate segregation of the three members and giving euploid combinations occurs in 50 per cent of the P.M.C., while a linear orientation leading to aneuploid gametes occurs in 50 per cent of the P.M.C. In other strains, differing in genetic modifiers from the above, the orientation of the chain is such that in about 95 per cent of the cells the normal chromosome 3 passes to one pole while the other two members of the chain pass together to the other pole: Here we apparently have a case of genic control of orientation, and hence segregation. This finding is of interest in connection with the breeding behavior of Oenothera translocations.

3. Maize strains with 11 bivalents.

From the translocation mentioned above it has been possible to obtain plants with 11 pairs of chromosomes. They carry no duplication of genetically active chromatin. This increase in chromosome number was a consequence of the breaking of the centromere of chromosome 3 into two portions with both the short and long arms receiving part of the parental centromere.

M. M, Rhoades

New allele of Gal on chromosome 4.
In the course of studies on a new chlorophyll striping character, a super-allele of Ga_{1} on chromosome 4, was found. This allele, Ga^{s}, is cominant over Ga. Small ga pollen does not function on Gas silk even in the absence of competition with Ga or Gas pollen. Out of 14 such crosses only one sced developed on one car. The other 13 ears were completely devoid of seeds. This is interesting in view of the fact that ga pollen does function on Ga silk when there is no competition with Ga pollen. Sclfing of plants heterozygous for Ga and Ges using sugary as a marker, Ga Su/Ges Su, showed that Gas pollen functions in the production of approximately 66 per cent of the kernels when competing on Ga^{5} silk. This super-allele appears to be independent of the striping.

Drew Schwartz

Studies with mutable wexy.

An allele at the waxy loous (wx ${ }^{m}$), which mutates with a high frequency to $\mathbb{W x}$ in both endosperm and gorminal tissue, is under investigation. This allele is intermedjate between Wx and wx: Wxum plants segregate approximately 3 Wx : wx^{m}; and $\mathrm{wx}^{m} \mathrm{wx}^{s}$ plants approximotely $3 \mathrm{wm}: 1 \mathrm{wX}$. (Ratios deviate from $3: 1$ in some cases due to germinal mutations.)

Typically, a wrimx ${ }^{\text {s }}$ plant when selfed gives three classes of kernels: About $7 / 4$ waxy, less than $3 / 4$ mosaic (waxy with various sized spots of normal starch), and a variable number (often 5-20 per cent) of kernols with normal starch endosperm.

The most readily observable mutation both somatically and germinally is from y^{m} to W Rutation rate comparisons made between different stocks by counting the numbers of Wx kernels produced in orosses $W^{m} \mathbb{W}^{m}$ backerossed or selfed, indicate differences of the foll,owing order of magnitude:

…) "	vix ${ }^{\text {m }}$	Wx	w ${ }^{\text {S }}$	$\% \mathrm{Wx}$
S-43-12 selfed	140	4	1.	2.7\%
S-47-2 \times W ${ }^{5}$	199	41		17.0
9903-10 selfed	63	24		27.5
9903-4 selfed	53	34		39.0

The mutable allele probably also mutates to $w x^{5}$. Four ears from a cross $w X^{5} W^{S} x$ w $X^{m} W^{m}$ threw 5.3 per cent $w X^{S}$ seed. A mosaic kernel when grown and selfed gavo the phenotypic ratio 29 Wx:212 wX $19 \mathrm{wx}^{3}$-- the 29 Wx and $19 \mathrm{wx}^{s}$ kernels arising by mutation. These seeds are being grown now to establish their genotype.

In a fev stocks, kernels have been found consisting entirely of normal starch except for many small scattered waxy spots. Since in
these cases the rest of the ear bore all normal starch kernels (Wx by mutation), these spotted kerrels moy represent reverse somatic mutations of a somewhat unstable Wx' allele back to wx.

A study of the distribution of WX and wx pollen grains in aloohol preserved tassels from wx ${ }^{\mathrm{m}_{\mathrm{w}} \mathrm{m}}$ plents (Wx grains stain blue and waxy stain red with weak IKI) indicates that mutations may occur so early in tassel development as to affect an entire branch, or even a few neighboring branches. On the other hand, some branches carry anthers segregating in varying ratios, indicating later mutations. Mapping of cars from crosses wX $W^{W} W^{m} W^{5} W^{s}$ has not revealed any sectored pattern as yret.

Ruth Sager

Connecticut Agricultural Experiment Station
New Haven, Connectj.cut

Varietios of corn grown in the Northeast and in the Middle West at the same latitude are noticeably taller in the East. Several environmental conditions are involved in this growth difference, principally light intensity and temperature. Plants of many species, including maize, grown under tobacco shade cloth are significantly taller and broader in leaf than plants from the same lots of seed grown in full sunlight. Under the cloth shade the temperature is the sane as outside but the humidity is higher and the light intensity is lower. The same effect is noticed in the field where short-stelkod varieties of corn are grown in single rows between taller varieties. Where there is a wide alley between ranges the plants at the ends of the rows are shorter than those in the center of the rows, the plants graduating in height. Fere humidity and temperature are the same but light intensity varies.

Some corn seedlings started in the greenhouse and set outdoors were shorter at maturity than plants from the same seed started outcoons. This indicated that temperature in the early stages of growth had an effect, To test this, seeds of a uniform, vigorous, first generation hybrid (Wf9 x P8) were germinated in an incubator at about $30^{\circ} \mathrm{C}$. until the shoots and roots were from one fourth to one helf inch long. Three different lots of sprouted seedings: were held at 40,50 and $60^{\circ} \mathrm{C}$. for one hour. They were then plented in pots and left in the greenhouse until it was certain the plants would grow. They were then set in the field alongside plants from the same lot of seed sown in the open ground at the some time the treated seedlings were started in the incubator. Some of the treated seedings died but enough were started in each lot and later thimed to give an even stand of plants in the field.

All three lots of heat-treated seedlings were shorter in height, less vigorous in growth throughout the soason and leter in flowering than the treated plants. All lots grew to full maturity and were monsured after growth had ceased. The results are: Control 101: $40^{\circ} \mathrm{C} .87$; $50^{\circ} \mathrm{C} .89 ; 60^{\circ} \mathrm{Q} .93$ inches in height. The differences between the three
temperature treatments are small. All three averaged 90 compared to 101 inches in height for the control.

The result that was not anticipated was the pollen sterility in all treated lots. Normal tassels were produced with well-developed florets but the onthers were small and shriveled and for the most part remained enclosed in the glumes. In view of the fact that high temperatures sterilize the male germ cells in animals, from amphibians to mammals, these results are highly significant. This influence on growth is an anti-vernalization effect and may have wide usefulness in the production of hybrid seed especially if shown by other plants as well as maize.

> D. F. Jones

A second "Teoriod" mutation.

Another mutation to Teopod or a similar charecter, has occurred. This mutant was discovered by Dr. Bailey Pepper of the New Jersey Experiment Station in a field of sweet corn growing in New Jersey. We obtained seed from Dr. C. M. Haensler of the New Jersey Station. It was grown under the name of "Corn Grass" because it was much more like a grass than normal corn. The blades of the leaves are narrow and there are many tillers giving a grassy appearance. In the field the plants do not exceed three feet in height and look much less like normal corn than the Teopod of Lindstrom. However until the two stocks have been testad by crossing it is not possible to state whether they are allelic. These tests will be made in 1947.

The "second Teopod" was first grown in Connecticut in 1945. Seed from the mutent produced two kinds of plents, normal and Teopod, in approximately equal numbers. The normal plants were recessive. Openpollinated seec from the Teopod plants gave in 1946 a $1: 1$ ratio for normal and Teopod. In the field in 1945 and 1946 no tassels of any kind were preauced. The stock has been maintained by backerossing to normal corn.

In the 1946-1947 greenhouse, crop grown under a shorter day, tassels with apparently good pollen have been produced.

The "Teopod" reported here makes many brace roots beneath the leaf sheaths. Some of these grow to be several inches in length. It occurred to us we might propagate these asexually and an attempt was made. The out stalks rooted and lived for several veeks. Had the attempt been made earlier in the summer, it is possible they might have been successful.

One is forced to speculate whether mutations to such bizarre types as leopoc may have any bearing on the origin of corn. If a single gene can change the habit of a corn plant so completely, might not a reverse mutation have originally occurred to give us normal corn? Fossibly the ancestor of maize may have been something more like one of the Teopods.

> W. R. Singleton

The relation of plant colors to total dry weight in maize.
A number of years ago Brink (Jour. Amer. Soc. Agron. 26: 697703, 1934) reported the relative yielding capacity of four different anthocyanin plant-color types, nemely, rurple A B Pl, sun red A B pl, dilute purple A $\underline{\mathrm{E}} \mathrm{Pl}$, and dilute sun red A b pl. The stocks were so bred that all four classes occurred with approximately equal numbers in each of the 11 femilies involved in the test and so that the residual genotypes of the four color classes were approximately the same. Somewhat more than 3500 plants were observed and yields were reported as average dry weight of ears per plant in pounds es follows: Purple . 433 , sun red .569 , dilute purple . 561 , dilute sun red .511 . Thus dilute sun red, the prevailing color type of the country, yielded significantly more than purple and both sun red end dilute purple significantly more than dilute sun red.

The writer has made similar tests, using total dry weight of plant as the critation of yield. The genes band pl were derived from two dilute sun red (A b pl) inbred dent lines and their dominant alleles from several genetic stocks, including purple A B PI, brown a B PI, and redaish brown $A^{p} B$ PI. Each of these genetic stocks wes crossed with each dilute sun red inbred and purple plants of the resulting progenies were backerossed from one to three tines with the sume or the alternate inbred. Some of the cultures, therefore, were little if any more vigorous than the inbred lines and some showed marked heterosis, The four color types of any one culture, however, were comparable and occurred in approximately equal numbers. In table I are shown the average dry weights per plant in grams for the several color types of each of 14 cultures.

Table 1

Culture number	Number of plunts	Meen dry weight per flant			
		$\underline{A B P I}$	A B pI	$\triangle \underline{\mathrm{O}} \mathrm{P}$	$\pm \underline{\mathrm{b}} \mathrm{p} 1$
1	90	142	111	98	110
2	76	129	132	129	110
3	91	165	163	150	145
4	92	133	145	145	127
5	93	206	217	229	184
6	73	78	82	118	78
7	96	204	229	222	230
8	89	161	162	146	150
9	89	118	103	122	104
10	89	187	207	227	222
11	74	117	122	115	117
12	76	68	88	77	74
13	96	202	181.	186	199
14	94	186	172	185	203
Total	1218				
Average of meen dry weights		150	151	153	147

In adidtion to backarossing heterazygous purple plants of table l, certain sun red and dilute purple plants were backerossed with one or other of the same dilute sun red inbreds. Results are shown in table 2.

Table 2

Culture nuriber	Number of	Mean dry weight per plant			
	plents	$\underline{A B P I}$	A b pl	A b PI	A b pl
15	76	143	110		
16	89	129	124		
17.	86	128	134		
18	80	123	110		
19	82	132	128		
20	79	108	103		
21	91	222	238		
22	95	195	192		
23	94	201	194		
24	95	195	217		
25	88	120	106		
26	83	72	75		
27	92	259	251		
28	92	206	201		
Total	1222				
Average of mean dry weights		160	156		
29	84			143	146
30	91			149	152
31	89			166	153
32	72			136	113
33	75			157	113
34	80			140	120
35	74			126	118
36	61			71	85
37	92			253	254
38	94			199	199
39	72			196	171
40	31			202	184
41	26			215	209
Total	941				
Average of mean dry weights				166	155

From the results presented in table 1, it is obvious that purple plants were not appreciably less in dry weight than sun red and dilute purple plants. The dilute sun red plants were lowest in dry weight but not markedy less than the other three color types. The results given in table 2 were similar to those of table 1 . In one lot of cultures, dilute sun red plants. were slightly less in weight than sun red ones. In the second lot of cultures, dilute sun red again was less in weight than dilute purple; and the difference here is greater than in the other tests.

On the whole and in so far as the results here reported are conoerned, it can be said that in segregating cultures, dilute sun red plants were slightly less in total dry weight than were plants of the other color typas. Whether or not the fact has any significance, it should be remembered that, in all these tests, comparisons have been made between homozygous dilute sun red and heterozygous purple, sun red, and dilute purple.

Among genes other than B end PI thet are related to plant colors of maize, the A a pair is of fundamental importance. In most instances, only in the presence of dominent A do anthoayanin pigments develop. Where A results in purple or rec, its recessive alleles usually give brown or have no appreciable effect on color. Accordingly several tests have been made of the possible influence of A and of sone of its alleles on dry weight of plant. Certain colorless (green) types were crossed with the two dilute sun red inbreds used in the tests noted above. The F_{1} plants were backcrossed to the colorless parent. Three sets of cultures were

 two color types were represented. The results are given in table 3.

The records of table 3 reveal small but not consistent differences in total dry weight of plant between colored and colorless individ. uals of the several cultures. In averages of mean dry weights, sun red plants were about five per cent lighter than the corresponding coloriess ones, while dilute purple and dilute sun red plants were heavier than their colorless sibs by six and three per cent, respectively. With the genotypic backgrounds here involved, there was relatively little effect of A and of its reaessive allele a on total dry weight of plant,

There remains to be oonsidered a possible difference between the influence of A and of some of its recessive slleles when the background genotype contains both dominant B and dominant PI. In one lot of tests purple $A B P 1$ was crossed with brown E B P1 and backcrossed once with the same brown, The results are recorded in the first section of table 4 . Another allele of A, namely, ap , gives a redaish brown plant when in combination with B and Pl. Reddish brown was crossed with one of the two dilute sun red inbreds and the purple plonts resulting were backorossed once or twice with the sane readish brown. Recessive 22 with B and PI gives brown plant color. This brown was crossed with reddish brown and the resulting purple F_{1} plonts were backcrossed with reddish brown. The
 aP A2 B P1. All these progenies, segregeting purple and reddish brown, are recorded in the second section of table 4 .

Table 3

Culture number	Number of	Mean dry veight per plant					
	plants	A B P	a B PI	$\triangle \mathrm{DPI}$	a b P1	A b pl	a b pl
42	83	150	157				
43	73	158	138				
44	88	162	163				
45	70	176	180				
46	81	159	169				
47	80	182	21.5				
48	78	210	221				
49	52	189	227				
50	65	184	196				
51	57	188	193				
Total	735						
Average of mean dry weights		176	186				
52	47			144	130		
53	37			171	170		
54	42			143	105		
55	69			186	175		
56	73			171	163		
57	76			165	167		
58	79			169	163		
59	70			193	158		
60	70			1.66	183		
61	70			174	169		
Total	633						
Average of mean dry weights				168	158		
62	71				.	785	195
63	63					180	170
64	37					181	155
65	60					146	158
66	57			,		171	174
67	48					172	162
68	51					1.46	137
69	57					132	139
70	46					181	159
71.	59					167	164
Total	549						
Average of mean dry weights						166	161

Table 4

Culture number	Number	Mean dry wej.ght per plant					
	plants	A B P1	$\underline{\underline{E}} \underline{\mathrm{~B}} \mathrm{P}$ I	$A B P 1$	$\underline{A}^{p} B P I$	A2 B P1	$\underline{\underline{2 a}} \mathrm{BP}$
72	48	150	134				
73	80	95	75				
74	83	109	96				
75	\$0	97	88				
Total	291						
fiverage of mean dry weights		113	98				
76	61			126	96		
77	61			119	81		
78	71			111	84		
79	61			115	85		
80	49			156	138		
81	40			128	115		
82	81			112	89		
83	63			142	114		
84	56			126	122		
85	66			1.40	101		
86	76			157	106		
rotal	685						
Average of mean dry weights				130	103		
	59					167	1.41
88	68					170	128
89	41					173	147
90	45					162	119
91	75					154	127
92	67					163	117
93	83					171	124
94	92					136	135
95	73					140	103
96	77					117	95
97	73					207	182
98	67					140	91
99	78					172	131
Total	898						
Average of mean dry veights						159	126

Brown plents of the genotype $\triangle 2$ B P1 were crossed with one of the dilute sun red inbreds, with purpie, and with rediish brown. In all instances the resulting F_{2} purple plants were backcrossed with A 22 B P1. Here then the brown plant color is conditioned not by an allelo of \underline{A} but by an allele of $\Lambda 2$. The cultures involving $\Lambda 2$ and at are listed in the third section of table 4.

Cultures segregating for purple and brown plant color, as shown in table 4, whether the brown color is conditioned by a, or its allele ap, or by a gene of a different chromosome a2, all exhibit consistent results. The averages of the mean dry weights are greater in each of the three lots of cultures by from 15 to 26 per cent for the purple than for the brown plents. Moreover in each of the 28 cultures of table 4 without a single exception, the purple plents are heavier than the brow ones.

Since for one of the genes conditioning brown plant color, narely, a, no consistent effect on weight was found when A and ε were combined with B pl, b P1, and b pl (table 3), it seems reasonable to assume that the lighter weight of brown plants conditioned by $\frac{a^{p}}{}{ }^{p}$, or a2 in contrast with purple plants condjtioned by the dominant alleles of these genes, results from some deleterious effect of the brown pigments in the physiology of the plant, rather than from a direct effect of the 'recessive genes or of growth factors closely linked with then,

R. A. Enerson

Florida Agricultural Experiment Station Gainesville, Florida

Mendelion Intorpretation of offspring-parent regressions.

Dr. K. Mether on his recent visit to this country discussed sone extensions of methods proposed by Fisher, Immer and Tedin, (Genetic 1932), for estimation of dominance bias in quantitative inheritance.

My own attack in the last News Letter is also an extension of the same. My approach seems to have some advantages from employing highly inbred or homozygous parents. Uncertainty on linkage effects is largely eliminated. Dominance does not reduce correlation between phenotypes of homozygous parents and the gametes they produce. I have fourd no particular advantage in requiring equal frequency of a and A alleles by confining study to populations which sten from a single selfed heterozygote in each case. Samples of homozygous lines, selected or othervise, seem to be satisfactory. If all of this be true the method must have a wide utility and may be presentea again from more of a Mendelian and less of a mathematical viewpoint.

If the heterozygote aAbBcCdD is crossed to the multiple recessive tester abbocdd, testcross progeny may be classified on kinds and frequencies of four distinct qualitative charncters to obtain a reflected view of dominant alleles in grmetes of the heterozygote. This is the
method of classjcel genetics. It has been seldom noted here that regression of number of plus characters in testeross progeny on number of dominant alleles in parent gamete is 1.0 . Every plus allele in a gamete provides a plus character in the zygote, regardless of linktge.

The top doninant AABBCCDD is clearly worthless as a tester, offspring-parent regression is zero. Internediate testers are efficient in inverse proportion to the number or proportion of loal of AA type. Thus if testers in general are of aa type at one half of the loci which are heterozygous in the F_{1} to be analyzed, a dominent allele in F_{1} gametes will provide a dominant character in testcross progeny in one half of the cases. In the other half the dominent character is always provided by the tester and a dominant allele in the F_{1} gamete can add nothing more. Regression is one half. Reduction of regression by dominant, genes in the tester is purely a dominance effect. This doninance effect is reduced one half by selfing the testcrosses.

It hardly seens necessary to labor with the transfer of these concepts to the general field of multigenic inheritance where effects of the several genes combine in a single quantitative measure, and where dominance is taken into account quantitatively. In the former cese, concern is primarily with frequencies. Basic effects of genes and dominance effects are both tacitly defined as unity throughout. In the latter case the two effects must be defined separately and quantitatively, We cannot assume that either is unity since we are concerned with degree of expression, not with just whether the character is or is not expressed.

In my attack the array of F_{7} gametes is replaced with an array of gametes from an array of homozgeus parents. The purpose is no longer to obtain a reflected picture of the genetic array. That array is already revecled in the array of honozycous parents. The purpose now is to estimate regressions of testcross progeny on gamete or honozygous parent with different testers. If both the bottom recessive and top dominant were available as testers, decline in regression from one case to the other would reveal directly the average degree of dominance. But neither of those two testers is likely to be available in multigenic cases. We are restricted to a study of regression relations with such testers as we may be able to develop.

For quantitative definitions of basic gene effects and dominance effects we may well employ the general scheme of Fisher, et al (1932) which is essentially that of Fisher in his 1918 paper on correlation between relatives, and of Mather on his recent visit. If the basic, phenotypic effect of substituting A for a is "d", phenotypes of aa, a A, AA are $0, \mathrm{~d}, 2 \mathrm{~d}$. The heterozygote is strictly intermediate. But if there is in addition an interaction of a with f to provide also a dominance effect " kd ", the phenotypes are $0, \mathrm{~d}+\mathrm{kd}$, 2a. These quantities are deviations from a working origin at aa. Deviction of the heterozygote from strict intermedincy is kd , (h in the notation of Fisher, et al).

For a multiple set of genes $a_{1} A_{1}$, $a_{2} A_{2} \cdots \cdots a_{n} A_{n}$, we may as well let d and $k d$ be average values for the several loci. Then if gene action is additive each genotype is evaluated (estinated) by suming the
several d's and kd's. The simplest case is $n=2$. The checkerboard frame is

Phenotypes of the 3 parent classes are written on the margins along with the gametes of each class. Phenotypes alone are written in interior cells for offspring. It may be ciesirable in teaching to write genotypes also in the cells and to evaluate some of them by counting a d for each A allele and a kd for each a locus or each interaction of unlike alleles. It may also be cesirable to write genotypes of parents and evaluate them, noting absence of dominance effects.

Table 1 is a simple regression surface. Our avowed purpose is to study the effect of k on the shape of the surface that we may interpret shapes of date surfaces in terms of k, average degree of dominance.

In practice the homozygotes $a_{1} a_{1} A_{2} A_{2}$ and $A_{1} A_{1} a_{2} a_{2}$ are ordinarily indistinguishable. This means that the two center columns and two center rows of table 1 may as well be pooled to conform with the situation of data on a quantitative character. Fooling provides,

Table 2 -
Note that the entry in the central cell, e.g., of table 2 is the mean of the four central cells of table l. It is the predicted (average) result of crosses of homozygotes of the types indicated on the margins. Deviations of the four crosses from the mean are deviations from regression due entirely to dominance, to variations in degree of heterozygosity, specific oombining ability. These variations are not predictable from data on the parents. The teacher should write frequency distributions of individual crosses in each cell of table 2 along with the means given here,

Note further that, while tables 1 and 2, represent two-factor checkerboards of classical genetios with gametes of F_{1} recorded on the margins and F_{2} phenotypes in interior cells, the view here is arrays of homozygous lines on the margins with F_{1} phenotypes of crosses of such lines in cells of the tables. Subsequently, interior values will be referred to as $\mathrm{F}_{1} s$ in agreement with modern corn breeding practice. The two situations aro strictly analogous only when a and A are equally frequent in the sample of homozygous parents.

If table 2 is expanded to include many loci, parent values are $0,2 \mathrm{~d}, 4 \mathrm{~h}, \ldots-2 n d . A$ statement of the mean F_{1} of any cell in terms of parent values would be the general regression function of F_{7} on P_{7} and and P_{2}. The solution of this problem was given in the previous News Letter. The mean of any cell in a table of the type of table 2, may be calculated by solving a smaller checkerborc. Detailed arrays of gametes of the two parent types are written on the margins. But this is merely taking the product of two gamotic arrays, a fundamental principle of Mendelism. Hence, if u and w are the proportions of loci AA in F_{7} and P_{2} respectively, gametic arrays are represented in general by (1-u)a $+u A^{2}$ and (1-w)a + wA. In all of the crosses of P_{1} type parents $\times P_{2}$ type parents together, expectations are $(1-u)(1-w) a a,[u(1-w)+w(1-u)]^{2} a A$, uwAA. The sum of these three proportions, each multiplied by n and by the respective phenotypes 0 , $d+k d, 2 d$, is the expected increment of mean F_{1} over the multiple recessive T. Making the substitutions $u=\left(P_{1}-T\right) / 2 n d$ and $w=\left(P_{2}-T\right) / 2 n d$ frovides the desired function.

The concept $u=\left(P_{1}-T\right) / 2 n d$ might be presented effectively to a class by laying off an arbitrary scale to represent the range of phenotype from

bottom recessive to top dominant. The scheme is to count 20 for each locus $A A$ as the increment above T, hence, and where all n loci aro AA. The position of any homozygote P_{1} on this scale reveals directly the proportion of loci $A A$ in $P_{1}, u=\left(P_{1}-T\right) / 2 n d$.

The purpose of T is to adjust for the possibility that the phenotype of the bottom recessive is not zero on the data scale.

It is instructive to verify from table 2 results reportec last year. The left column may represent a series of hybrics having a common farent F_{1}, the tester, which is aa at each locus. Lines being tested are represented on the parallel margin as different values of the variable P_{2}. It is clear that if the tester is completely recessive, every substitution of A for as in P_{2} will provide a substitution of at for aa in F_{1}. Regression of F_{2} on F_{2} is (ai-aa)/(4h-ab) or (one basic gene offect plus one cominance effect)/(two basic effects) or $(1+k) / 2$. Note that the increment from one cell to the next, left column of table 2, is d+kd and that the corresponding increment in the P_{2} column is 2 d . The ratio is ($1+\mathrm{k}$)/2. When P_{1} is at throughout $P_{1}-T=0$, Substitute in lest year's formula for $\mathrm{b}=$ to obtain $\mathrm{bp}=(1+\mathrm{k}) / 2$, if $\mathrm{P}_{1}-\mathrm{T}=0$,

Similarly from the right column of teble 2, $b p=(1-k) / 2$, when F_{1} is AA throughout, $\left(P_{1}-T\right)=2 n d$. Expansion of table 2 to include many loci will not provide different results.

If, as in most actual cases, some proportion u of the loci of P_{I} is AA and $1-u$ is at, the wejghted mean increment of P_{1} is $[n(1-u)(d+k d)+$ $n u(c-k d)] / n$. Or the wefghtec mean of slopes is $(1-a)(1+k) / 2+u(1-k) / 2=$ $(1+k) / 2$-uk. Substituting $u=\left(F_{1}-T\right) / 2 n d, b p=(1+k) / 2-(k / 2 n d)\left(P_{1}-T\right)$.

If b is $(1+k) / 2$ in the left column of table 2 and $(1-k) / 2$ in the right colum the increment of by across the table is $[(1-k)-(1+k)]$ $/ 2=-k$. The concurrent increment of u is l, and of F_{1} it is 2nd. Regression of $b p$ on u is $-k$ ond on p_{1} it is $-k / 2 n c$, as the formula bp $=$ $(1+k) / 2-(k / 2 n d)\left(p_{1}-T\right)$ exprossly states.

Thus, the values reported last jear may be verifiod and their interpretations clarified by direct inspection of table 2 .

If it is not immediately obvious that the regression estimates are unaffectec by linkage and by relative frequencies of a and A alleles, except as noted, the student may need to work out some srecific examples with numerical values assigned to $d, k d, q$, end per cent crossover and caloulate regressions by machine formulas as well a.s by direct substitution in present formulas.

It is also clear that bp for the miccolumn or midrow of table 2 is one half, and that mean bp for all three columns or all three rows is one half. This latter case of mean bp for the whole table is the one usually ceilculated for regression of offspring on one parent. If a and A allelog cre equally frequent, frequancies of the three columns are expected in the ratio 1:2:1 and dominance offects on regression are effectively cancellec. Note that $b p$ is always one half if $k=0$. But if a cilleles are in the minority, the frequency of the right column will be ereater than that of the left column and expectation is that dominance will depress mean partial regression below one half. This seems to be an adequate explanation of low regressions of yields of corn hybrids on yields of inpred parents. No alternative explanations of higher oraer interactions of genes or of inefficient plot technic appear to be necessary.

The function, $F_{1}=b_{1 a} P_{1}+b_{1 b} P_{2}+b_{2} P_{1} P_{2}+c$
may be fitted to data on samiles of homozygous parents and the several F_{1} crosses, or F_{2} by selfing F_{1}. For F_{1} data, estimates of b_{1} are estimates of ($1+k+k T / n d) / 2$, on the assumption of adaitive gene action. Estimates of b_{2} are estimates of $-k / 2 n d$. Regression of b_{p} on P_{1} or on P_{2} is the same estimate of $-k / 2 n d$.

As indicated last year, the general regression function may be solved to obtain estimates of bottom recessive, top dominant, and average ciegres of dominance. From the regression of bp_{p} on F_{1}, the estimate of P_{1} for $b p=0$ may be obtainec. This is the critical value of FI . Such a tester combines equally well with poor, medium and good lines on the average. Better testers may be expected to combine better with low lines than with high lines, bp is negative.

The several estimates reported last year are in all respects surprisingly consistent with the hypothesis of overdominence in vigor of corn. Tests of significance of be reportec last year are aprarently in error. The appropriate tost is for significance of departure from linear regression (Sneciecor 14.3). By this test no single estimate of b_{2} is significantly different from zoro which noy mean merely that numbers are too small. The crucial point for overdominance is whether k is significantly greater than 1. An adcitional set, of data from C. M. Woodworth, Oren Bolin and Eerl R. Lerg of the Illinois Experiment Station gives essentially the same picture. The critical value of P_{7} is $404 \mathrm{bu} . / \mathrm{A}$. Yields of inbrea parents range from 2 to 40. hean yicla of F_{I} s is 103.

We have then one more set of data consistent with the others in supporting the conclusion that the more vigorous inored lines in hand are worthless or worse as testers for general combining tbility, since $\mathrm{k} p$ is zero or negative with such lines as testers.

Thet the few sets of data are not crucind for overdominanco is not surprising. They would not be crucial even if the test for k greater than I showed high significance in cach case. So few cases of monogenic inheritance and linkage would not prove the chromosone theory of heredity. When many more sets of data on different types of characters in both crossand self-fertilized species have been analyzed wo may have a clearer picture of where and to what extent dominance bias occurs. But even then
the results can hardly be conclusive and we will probably still need to be content with theories which agree best with the whole body of evidence.

There is a suggestion in corn yield data that the relative order of rank within either a group of inbred lines or within a group of hybrids may be quite different in two different environments. Further, the shape of the fitted regression surface may also vary greatly in response to environnental effects. If alleles A^{\prime} and A perform different functions in the sense of East, $A^{\prime} A^{t}$ may be usually inferior but sometimes superior to AA. The heterozygote A'A if better buffered to environmental shifts may be on the average superior to either homozygote. In these events, A will probably be the more frequent and also the dominant favorable in the usual environment. But the possibility exists that in some environments A! will be the dominant favorable, with dominance still in the direction of greater vigor. The dominant favorable A^{\prime} will be in low frequency. The ratio k of an average cominance effect to an average basic effect may be changed and with it the equilibrium gene frequency ratio. All of these shifts will be likely to appear in the fegression analyses for a given sample of stable lines and F_{i} s in different ervironments.

Fred H. Hull

Addendum.
Since the above report was typed I have reoeived from Dr. Faul H, Harvey yield records on 12 lines and the $66 \mathrm{~F}_{1} s$ and have now completed the first part of the analysis. Yields of lines (selfed four times) ranged from 12 to 24 bu./A. Mean F_{1} is 46 . The critical value of P is 25, one bushel above the top line. These data seem to agree with the other sets and the conclusions drawn from then in all respects.

These last results have given me sufficient confidence to propose a further attack for which a consturable body of deta is now available, - data on Fia but not on the prect lires foen fy fior any column of table 2 may be considered a measuie ut se menere ombing ability G of the constant parent for thet colum it as acly demonstrated that G is a linear funstion of P. Hence, we nar as wed estimate the G value of a tester which provides zero particil segrestion of F_{1} on G. Where the several F_{1} s of a group of lines have been tested in ns many as four replications, one helf of the replications mag be oployed to estimate G values for the lines. The renaining repications mey entucte F_{1} s. Correlation of experimentel ecrora in the two estimates ε art tha: eltainated. The analysis, as before, is to run the simple regression of each F_{1} colum on the parallel column of G; then to run the simple regression of the first order regressions on G values of the respective constant parents; and finally to estimato G for $b p=0$. If this critical value of G is within the range of the data the only direct interpretation I have found is overcominance.

Agriculture with Ohjo, Indiana, Illinois, Kansas, Nebraska and Oklahoma in 1943. Mean G for each line was based on the data of five states for analysis wi.th F_{1} data of the sixth state in each case. The critical value of G is below the G measure of the top line in three cases and slightly above in two cases. In the sixth case the trend of regression is upward and the data are apparently not consistent with any dominance bias toward high yield. Interstate correlations of G values of the ten lines are mostly positive but not very large. This kind of analysis is apparently of some worth where such data are available but it would seem that the attack outlined in the preceding paragraph would be more efficient and also applicable to more data.

Fred H. Hull

Harvard University
Cambridge, Massachusetts

1. Hidcob color described by Demerec some years ago is probably due to one of the glleles of the B series. At least the gene responsible for it shows close linkage with G on chromosome 10. Color in the cob is associated with colored internodes in the stalk.
2. In various strains of the Guarany corn of Paraguay mid-cob color is frequently associated with a faint purple color on the pistillate glumes or bracts. The gene responsible for this color is an allele of Pl and shows linkage with $£$ on chromosome 6 . In the presence of B the purple glume color becomes very intense and is also extended to the leaves and stalks. This new allele, or another in the series, seems also in certain stocks to be responsible for the basal glume in the tassel.
3. Most of our time and space this season was devoted to determining on which chromosomes are located the multiple-factor segments which distinguish maize and teosinte. Relatively isogenic stocks, homozygous for one or more multiplewfactor segments, were produced by crossing four varieties of teosinte with an inbred strain, backerossing three times to the same inbred, and selfing. These were then crossed to a nine-gene linkage tester and backcrossed to a second nine-gene tester. The ears in these populations were then classified with respect to presence or absence of the multiple-factor segments from teosinte. Such classificotions are far from completely accurate, because the effect of the segments vary with the influence of several genes in the tester stock, especially i and g. Linkages can be detected, however, even when the classification is purely arbitrary, although exact crossing-over percentages cannot be determined from these particular studies. The results of these tests are shown in the accompanying table. Analysis of the data was greatly simplified by the use of McBee punched cards which can be sorted with a simple, inexpensive tumbler.

Table I. Summary of linkage relations of the multiplemactor segments derived from four varieties of teosinte

$\begin{aligned} & \text { Variety } \\ & \text { of } \\ & \text { teosinte } \\ & \hline \end{aligned}$	Number of serments	Linkage with chromosome number									Total number chromosomes tested
		1	$\underline{2}$	$\underline{3}$	4	6	7	¢	2	10	
Florida	1	-	\cdots	+	-	-	-	-	-	-	1134
"	2	-	-	+	-	-	-	-	-	-	1530
\#	1	-	-	-	+	-	-	-	-	-	1575
"	1	-	-	-	+	-	-	-	-	-	1512
"	2	-	-	+	-	-	-	-	+	-	1512
"	2	-	-	+	+	-	-	-	-	-	828
"	2	-	-	I	+	-	\cdots	-	-	-	1386
11	2	+	-	-	+	-	-	-	-	-	675
Summary	12	+	-	+	+	-	-	-	+	-	10152
Durango	1.+	-	-	I	+	-	\cdots	-	-	-	567
"	$1+$	I	-	-	+	-	-	-	I	-	756
"	2	+	I	+	-	-	-	-	-	-	1305
1	3	-	$-$	-	+	-	--	-	+	-	1494
Sunmary	7	+	-	+	+	-	-	-	+	-	4122
New	1	-	-	--	-	-	I	\cdots	I	-	1539
"	1+	I	-	-	+	-	-	-	-	-	855
"	2	I	-	-	+	-	I	\rightarrow	-	-	1575
"	2	-	-	\cdots	+	-	-	-	I	-	1440
Summary	6	I	-	-	+	-	I	-	I	-	5409
Nobogame	1	-	-	-	+	-	-	-	-	-	1359
	1	-	-	-	+	-	-	-	\cdots	-	765
"	2	--	--	-	+	-	-	-	I	-	1521
"	2	--	-	+	+	-	-	-	-	-	1602
Summary	6	-	-	+	+	-	-	-	I	-	5247
Grand Summary	31	+	-	+	+	-	I	-	+	-	24930
+ = Linkage											
$I=$ Indication of linkage											
- = Indep	spendent in	her	tan								

The important fact gained fron this study is that the multirlefactor segments which distinguish maize and teosinte are located on chromosomes 1, 3, 4, and 9 in Florica and Durango teosintes. In Nobogame teosinte which had previously been shown to carry only three major segments, chromosomes 3, 4, and 9 are involved. In "New" teosinte chromosomes 3,4 , 9 , and possibly 7 are involved. The remaining chromosomes appear to carry none of the major multiple-factor segments which distinguish maize and teosinte. They are probably not lacking in genes which effect the various characters which distinguish the two species but these are ejther modifier 3 or segments too smali to be detected by the methods followed in this experiment which depend wholly upon dominant or partially dominant effects.

It should be noted that chromosome 6 was not represented in the nine-gene linkage tester. Previous studies on crosses of Florida teosinte with a stock including bm_{1} on this chromosome gave no indication that it is involved in the four major segments.

The exact location of these segments and their length is yet to be determined. The segment on chronosomo l. shows very weak linkage with bm_{2} and since prcvious experiments with Florida teosinte had shown one of the segments to be strongly linked with P at the opposite end it is probable that this segment involves part of the short arm of chromosome 1. There is some crossing over within the segment.

The segment on chromosome 3 shows 25-30 per cent of crossing over with A. This segment is usually transmitted intact. Crossing over, if it occurs at all, is not readily detoctable.

The scgment on chromosome 4 includes the Su locus. There is consigerable crositing over (about 30 por cent) within the segment.

Nothing is known btout the position of the segnent on chromosome 9 , or the omount of crossing over which occurs within it.

The cffocts of the different segments are alike but not identicol. All reauce the size of tho seeds, and the diameter of the ear. All of them increase the prominence of the glumos and the number of ears produced on a shagle plant. At loast two of these segments contribute very noticeably towerd the reduction of number of rows of grain. In another experiment single segments were first rendered heterozygous by crossing with the original inbred strain, and the hybrid was then crossed with a second inbred to procuce a vigorous and uniform F_{1} in which approximately half of the plants were heterozygous for the segment. Ears from plants heterozygous for the segments average two rows of grain less than those which lacked the segments.

The segments have no discemible effect upon the pairing of spikelets or response to length of day. It is probable that they carry genes affecting these characteristics but that threshold limitations prevent single spikes from appearing at these levels.

The corresponding segnents derived from different varieties of teosinte are similar in the nature and magnitude of their effects. In each case the segment on chromasto 4 is the most "potent." In each case this segment exhibits crossing over within the segment. Furthermore,
a stock derived from Florida teosinte and homozygous for the segment on chromosome 4 is almost identical with a corresponding stock derivec from Nobogame teosinte. Differences in teosinte varieties are attributable to: (1) Differences in the number of major segments; (2) the genetic nature of the maize varieties into which they have become incorporated; and (3) the probable presence of additional smaller segments or modifying factors.

We have some evidence that a single segment in heterozygous condition can increase yields appreciably, the extent to which this happens depending in part at least upon the kind of germ plasm with which it is combined. Hybrids involving some inbred strains are noticeably improved when small anounts of teosinte germ plasm are included.

It has so far been impossible to cietect these segments cytom logically. Stocks heterozygous for the segment on chromosome 4 occasionally exhibit a region of weak pairing on chromosome 4 , but since similar regions are found on other chromosomes little significance can be attached to this. Apparently the segments are at least partly homologous to the corresponding regions of maize chromosomes so that there is no regular and distinct failure of pairing.

The new data seem to establish beyond any reasonable doubt the hybric nature of teosinte. At least the varieties so far studied are nothing more than maize which has been contaminated by another species. The contamination is not a random one but involves multiple-factor segments of four, or in the case of Nobogame teosinte, three chromosomes. These foreign genes must have come either from Tripsacun, or from a "pure" variety of teosinte now extinct or yet to be discovered.

> P. C. Mangelsdorf
(EC. note: In correspondence Dr. Mangelsdorf has written, "I have an abundance of seeds of several nine-gene multiple testers and shall be glad to share it with anyone who wants some.")

> Kentucky Agriculturel Bxperinent Station, Lexington, Kentucky and
U. S. Department of Agriculture, Beltsville, Maryland, coopersting

"Scattergrain" white double crosses.

In the fall of 1945 a number of farmers' fields of hybrid corn were reportea in Kentucky, Tennessee and Indjena which failed to set seed properly. In several fields examined near Henderson, Kentucky, the seed set ranged from as low as about 20 per cent to 85 per cent or better. The difficulty received considerable local publicity and the hybrids concerned were locally designated as "scattergrain" hybrids. The trouble was restricted to white hybrids but the reports indicated that hybrids from several different seed corn companies were involved. Evidence
pointec to male sterility on a fielc-wide socle as the cause of the poor seed set. The amount of sterility occurring in the scme hybrid varied from field to field and seemec to be worse in bottom-land fields that were planted late.

On the basis of information obtained on the pecigrees of some of the offending hybrids, seed of a series of reciprocel single crosses was collected or produced in the greenhouse during the winter of $1945-1 / 46$. Observational plentings of these singles and several of the "scattergrain" double crosses were made at Lexington, Berea and Henderson, Kentucky, and at Beltsville, Maryland, in 1946. The data obtained do not permit a critical analysis of the cause of the sterility as, for some unexplained reason, the sterility occurred with a much lower frequency in the single crosses than in the double crosses. Sufficient data vere obtained on the sterility, however, to suggest the following as important contributory factors:

1. The sterility seems to occur only in crosses which have a cytorlasmic contribution from 33-16, an old inbred line developed in Indiana.
2. Sterility in the hybrids also is influenced by contributions from the male parent. The substitution of only one line in the male parentage of one of the "scattergrain" double crosses, completely eliminated the sterility in the resulting double cross.
3. The expression of the sterility is very subject to environmental influence.

Merle T. Jenkins
L. M. Josephson

Missouri Botanical Garden, St. Louis, Missouri, and Pioneer Hi-Bred Corn Company, Johnston, Iowa

Infloresconce structure and row number.

Two abnormelities have previously been described whioh affect row number in maize, each in its own particular way. (1) Multiplication, recently described by Cutler, produces two spikelets where normully there would be one. In its lowest expression it is responsible for the occasional kernel squeezed in between the regular rows of northern eight- and ten-rowed flints. In its roost extreme development it produces the crowded and apparently rowless ears comonly seen in parts of Central and South America. (2) Condensation (Anderson, Ann. Mo. Bot. Gard.) is a telescoping of suocessive internodes and is most easily analyzed in the tassel. In its extreme form it produces an olintical or flattened, more or less fasciated ear. In its less extreme expressions it is responsible for most row numbers of 16 or above.

While these phenomena are not unknown in other grasses, as has been demonstrated by Cutler, they are both of them of a more or less teratological nature and it seemed probable that a study of the inflorescence structure in varieties of maize which have neither condensation nor multiplication might be illuminating. A special effort has been made to study such strains and, as anticipated, the structure of their inflorescences (tassels and ears) is much simpler then in other kinds of corn. Farticularly as it concerns the central spike of the tassel, it does not seem to have been previously described. It is not spiral but whorled. There are two extreme types, those with whorls of two and those with whorls of three.

0ld-fashioned eight-rowed flint corns are an example of one extreme. Their central spikes are in whorls of two pairs of spikelets, each whorl bearing its spikelets at right angles to the whorls immediately above or immediately below. The uppermost tassel branches are also clearIy in whorls of two. The ather extreme type is found in certain persistently 12- and 14-rowed strains of corn from South America and the Southwest. They have a structure similar to the eight-rowed flints but the central spike has whorls of three pairs of spikelets and the upper portion of the tassel has whorls of three branches. In the Great Flains there are varieties with from 10 to 14 roms. When they are vithout condensation they show various mixtures of two-whorled and three-whorled.

The apparent spiraling of the central spike is due to the regular alternation of two patterns of spikelet position from node to node. In the eight-rowed flints, for instance, if the spikelets are on the north and south sides at one node they are on the east and west at the next, then the north and south again, and so on. In the 12 -rowed corns there is a similar alternation from positions A, C, E, to positions B, D, F, and then bock again to A, C, E, producing a six-ranked spike. Since each spikelet pair on the ear produces two kernels of corn the earequivalent of a fourwranked spike will be an eight-rowed ear; for a sixranked spike it will be a 12 -rowed ear. The structure of the tassel in these eight and 12 -rowed races is almost transparently simple. The addition of a little condensation or multiplication, hovever, produces an organ so difficult to analyze that until these less complicated types had been studied the basic whorling was pretty completely concealed.

These observations allow us to put forward a series of hypotheses as to the various processes affecting row number in North American corn. They have already been tested genetically in part; further experiments are under way. The hypotheses are as follows:

There are at least four quite different characters which affect row number in maize. Each operates a aifferent lever so to speak. (1) Maize is fundamentally either in whorls of two branches or whorls of three, or in various mixtures between these two extremes. There are indications that the genetic differences between the twomhorled and the three-whorled are multiple factorial.

In North America this basically simple difference is complicated by the almost universal presence of (2) Condensation. Preliminary genetic results suggest that this may be a single recessive gene, with a number
of moaifying factors which usually hold dom the expression of this fundmontally terctologicel condition. In Contral and South America (3) Multiplicotion is also an important factor in differences in row number. Nothing is yet known about its inheritance but various states of the phenomenon are known from very slight to very extreme. Except in on occasional inbreci it is of little consequence north of Mexico. In addition to the above processes, row number can also be affected by the Gevelopment or lack of development of the second floret as in Country Gentloma sweet corn and in various strains fron South Anerica.

These hypotheses con ell be tested by orthodox genetic methods as soon as there are available multiple merker stocks which exhibit extreme velues for the above phenomene, viz., conciensation vs. noncondensction, three-whorl vs. two-whorl, multiplication vs. no multiplim cotion.

Edgar Anderson

Pioneer Leboratory, Fioneer Hi-Bred Corn Company Johnston, Iowa

Anong 80 dent corn inbreas of comercial importance, chromosome knob numbers range from 2 to δ with a frequency distribution as follows:

The nodal knob number is 4 with 3 and 5 as the two next most
frequent classes. Knob number is strongly associated with at least two
morphological characters - nunber of rows of kernels and development of husk leaf blacies (Plag leaves) A A knob numbers decrecse, row nunbers decrease and flag leaves become more pronounced. It is assumed that low knob numbers, low row nunbers and long flag leaves were introduced into Corn Belt dent corr from Northern filint varieties. It is interesting and perhaps significant that these charncters are so strongly linked that even after a century of breeding they still remain together in dent corn inbreds.

Although exceptions heve been observed, there is clso an overall correlation between high knob number and shape of ear. For example, those inbreds which approach Mexican Pyranidal in ear shape usually fall into the higher chronosome knob groups.

William L. Brown

Frinceton University
Frinceton, Nev Jersey

New :lleles of 4 .
The alleles A^{b} and a^{p}, origincting from Euador and Feru, respectively, are associcted with brown, F-determinod, perionre color (Enerson anc Ancierson, Genctics 17:503-509. 1932). Both alleles are dominent to A (North Amerien origin), which is essocisted with red pericarp color. Several nutants having intermediate plent color effects and arising spontanoously from A^{b} have a brown pericarp effect which likewise is cominant to the red of A (Stadler, Nevs Letter 17:20-21. 1943): The divergent action of the is slleles of North and South American origin is revealed further in a series of dosage and cominance studies conducted by the author (Microfiln Abstracts 7: No, 1) and is being investigated further using exotic material collected fron isolatec regions of Peru and kindly supplied by the Pioneer Hi-Breci Corn Conpany, Johnston, Iowa. Some results of the preliminary work are reported here.

1. Dominonce effects of Peruvian alleles essociated with full purple-aleurone color (A-F). Small progenies from individual, openpollincted, Feruvian ears were planted at Colunbis, Missouri, in 1945 end crosses vere made on wat on A-. The progenies of the \& crosses with those Peruvian plents which were shom to be homozygous for alleles cieteraining full-purple aleurone color were planted at Ames, Iowa, in 1946. Since the A- plents in the 1945 crosses were either his or ha, two kinds of progenies were expectea; cesignetine the A-F dleles carried by any indivicual Poruvian plant as $A-P_{1}$ and $4-P_{2}$ these progenics were expected to contein plents of the following genetic constitutions:

Oross (1945)

Types in progeny (1946)

保

Peruvian clleles, the first in compounds with the f allele and the second in heterozygotes with both the 4 and s.lleles. Crosses were made on individucl plants within progenies using as Lt Dt plants as pollen source. Progeny type was thus distinguishec by the presence or absence of dots and this wes elso the basis for distinguishing $\Delta / A-P$ from $\varepsilon / \Delta-P$ flants within progenies of the second type. Seven such progenies representing the test of A-P alleles of sepenate origins in Peru were classiftoe for nericarp color; the available date are sumarized in the following tables.

Ecmily	Cross		$A / L-1$	
			red	bromm
117	$\underline{L} / 2$	X I $\mathrm{I}-\mathrm{F} / \mathrm{A}-\mathrm{P}$	4	7
119		Seme	9	1.4
120		Same	20	0

Fenily	Cross	$4 / \pm-\mathrm{P}$		$\varepsilon / \leq-P$	
		rec	brown	rea	brown
. 11.18	$4 / \mathrm{S} \times 4-\mathrm{P} / 4-\mathrm{P}$	3	4	2	3
122	Sane	4	5	2	1
123	Same	0	3	0	3
124	Same	5	0	2	0

In spite of the small numbers involved ir these progenies it is obvious that the $E-P$ alleles of isolated origin are not similar in their effects on periccrp color. Moreover, in the ceses of fouf of the seven progenies (all excepting families 120,123 : and 124) the two $A-P$ alleles associeted in individuel Peruvian plants show contrasted behavior, The data suggest that in -P alleles, so fer es these progenies represent them, are of two types: One determaing red pericarp color and indistinguishable from 4 ; the other determining brom pericarp color and having an effect ompletely dominant to thet of A. There is no evidence for the existence of an $A-P$ allele having a brown pericarp effect which is recessive to $\&$, unless it be found that the progenies of the red pericarp types in fanilies 117,119 enc 120 segregote ears showing brow pericarp color.
2. Domincnce effects anc response to Dt among Ieruvian mutants of tho op and a type. Sone of the feruvion plonts whioh wore crossec to A tester in 1945 wore not homozygous $\therefore-P$; six of the test oross ers gave 50:50 ratios for purple; colorless deur one and two geve 50:50 rotios for purple; pale aleurone. In ench of these ejght cases some of the seeds having colorless or pele aleurone showed dots. Since the tester parent wos adt act RR CC DtDt in constitution, the presence of these cots ostablishes with certainty thet the oolorless and pale seeds ore due to mutant alleles at the 4 locus; if a dominart dilution foctor or a reoesm sive factor other then s were responsible for the dilution effects the
seeds would be expected to be without dots. This apparently is the first report of the occurrence of rocessive ε in South fmerican materinl; since five of the six Peruvian plents which were found to be heterozygous for a were of separate origin this mutant probably is widely distributed in Teruvion matericl. It is likoly that these types failed to be recognized earlier bocausc of the frequent occurrence in Peruvian matericl of the recesaive forns of the genes \underline{I} and \underline{C}, which complement A in pigment procuction and because they may not have been studied in beckgrounds providing the Dt gene which is specific for s.

The action of the pale mutants (designated ${ }^{p}-\mathrm{P}$) was stuatied further in progenies providing the combinations $\varepsilon^{p}-P / \underline{a}$ and $\underline{q}^{p}-\mathrm{F} / \mathrm{A}$. In the ceses of both pale mutants, the combinations with recessive a were invariably associated with brown pericarp color, as were those with A. To test the response of the $\mathrm{EP}-\mathrm{P}$ alleles to the $D t$ gene, crosses were made between $a^{p}-P / a$ and the tester $a^{d l}$ a $a^{d l}$ Dt (the $\underline{a}^{d l}$ gene does not mutate under influence of Dt). Without exception, the prie seeds ($a^{P}-f / \underline{Q}^{d l}, D t$) on ears from these crosses were without dots, whereas colorless seeds ($2 / a^{d l}$, Dt) on the same ear were dotted. Hence, both $a^{p}-\mathrm{P}$ alleles are stailar to of their periourp color effects and response to $D t$, though they ay differ from exch other end from a^{p} in the matter of their determination of plant and aleurone pigmentation.

Similar stadies are in progress with the six Ieruvian a mutants (designated $\underline{g}-\mathbb{F}$). The limited date which are available at the time point to a divergence in type of action within the a-P group as well as between menbers of that group and recessive a. All six members are associated with brown pericarp color as determined in heterozygotes with a. Dominance effects in compounds with t heve been deterrained for only two of the six mutants but in both cases there is complete dominance over the red effect of 4. This is the first knowledge of an allele which is associated with colorless aleurone and brown plant color, in which respects it is recessive to \underline{A}, and yet shows complete dominence to A in its effect on pericarp color. Of the four a-P mutants tested for response to the Dt gene, one proved to be cottcble, the other three being without response. The two mutants mentionec as showing dominence to A in pericarp color effect do not responc to Dt. Except for the products of X-ray and ultraviolet treatment there are no post reports of a mutants which fail to respond to Dt; Rhondes (News Letter 15: 6. 1941) desoribes an a mutant which is indistinguishoble fron a with the exception that it shows much reduced rem sponse to Dt , but this allele, unlike the a-P alleles, is recessive to 4 in pericarp color effect. The lack of response to Dt reported here for three naturally occurring a-P mutants suggests that the failure to dot in the presence of Dt is not \bar{a} valid criterion of deficioncy at the A locus.

The evidence reviewed here adds to an already complex picture of gerie action at this locus. Most significant, from this standpoint, is the evidence on the extreme antinorphism of at leest two of the a-P elleles. The antimorphic effects of certain of the A alleles have been reviowed previously (Microfiln Abstracts 7; No. 1). The evidence is not in support of certain hypotheses, notably those of Wright and Stern, which have been advanced to explain antimorphic effects. It is suggested that the antimorphic behavior of the alleles of A may be explained on the basis of an hypothesis which holds a single gene capable of entering into
two different reactions. It is the purpose of further investigation of the Feruvicn alloles reported on above to provide additional tosts of this hypothesis.
J. F. Laughnan

Texas Agricultural Experiment Station College Station, Texas

For a few years observations have indicated that teosinte has more tolerance to heat and drought and possibly more resistance to certain diseases and insect damage than corn. Efforts to improve inbred lines of corn by modifying them with teosinte characters have progressed far enough to give a suggestion of the results to be expected. Various Texas lines were crossed with Florida teosinte, backcrossed to corn from once to three times, and selfed each generation afterwards. In the development of the modified lines, no effort was made to select by observation among the segregates available for use. Plants were selfed at random, and only those plants or ears that were seriously affected with such abnormalities as disease, insect damage, and sterility were later discarcied.

Tests of the desirability of the modified lines as compared to the original. (urmodified) corn lines were of two kinds: (1) Tests of the lines themselves to compare their tolerance to artificially applied heat; (2) Yield tests of the various lines crossed to a common tester, conducted under field conditions.

1. Meat-tolerance tests. The procedures followed in making tests for tolerance to heat were based on those used for several years at the Kansas Agricultural Experiment Station, although in some respects there are considerable differences between the Kansas methods and mine. Inbred plants of Tx $\langle\mathbb{R}-3$ and of eight modifications of it were grown and given artificial heat treatments in an oven in six replications, each replication being grown anci treated at a different time. Glazed pots with top inside measurement of four inches were used. The pots were selected for uniformity. The soil used for the first five replications was a thorough mixture of sandy loam and compost. That used for the sixth was relatively homogeneous Houston Black Clay.

In each replication, five pots of each line were planted, and an effort was made to have a final stand of two plants to the pot. This procedure usually resulted in 10 plants of each line for each replication.

The plants were given the artificial heat treatment when 13 to 15 days old. The oven used was electric, automatically controlled, with forced ventilation. It was designed for other purposes, and the fluctuation in the temperatures obtained led to some difficulties. However, after a few replications had been treated for practice, the method was found to be usable.

Prior to each application of heat, the soil in the pots was
well-saturated with water, The pots were randomized in the oven and kept under heat treatment for eight hours at $55^{\circ} \mathrm{C}$. After the treatment was complete, the plants were kept in the greenhouse for 5 to 30 days without water while the readings of the results were taken. It was found most practicable to take the first reading about 24 hours after treatment, because the extent of the damage to the plants was more readily determined sfter this lapse of time. The best method found of recording the results was to tabulate the number of days that each plant lived after treatment. In most of the replications no plants were living 10 days after treatment, and those which did live this long or longer were considered not to have been killed by the treatment.

For the furpose of analyzing and studying the results, it was found desirable to assemble oll the data for each entry into a single score. In order to accomplish this objective, the combined number of days that all the plants of an entry lived after treatment was adopted as the score. Thus, in the fifth rerlication of modified line No. 1 , the 10 plants lived the following numbers of days: $3,6,3,20,3,17,3,3,5$, 15. Buty since a plant is not considered to have been killed by the heat treatment when it lived 10 days or longer, all numbers above 10 were reduoed to 10 , and therefore the numbers actually added in order to get the score of this entry vere $3,6,3,10,3,10,3,3,5$, and 10 . The score of this entry, therefore, is 56 . The highest possible score is 100 , and the lowest is zero. The score of each entry is shown in table I, the various lines being listed in descending order of their observed tolerance to heat:

Table I.

Lines	Replications						
	1	2	3	4	5	6	Average
3	45	38	20	85	100	62	58.3
9	32	26	30	100	96	60	57.3
5	47	22	12	90	96	30	49.5
6	28	22	16	71	100	59	49.3
4	26	22	16	60	94	61	46.5
Tx4i-3	36	1.8	10	50	87	42	40.5
1	22	32	26	77	56	26	39.8
2	18	14	20	30	93	33	34.7
7	36	14	16	34	69	30	33.2

For significance, $.05=14.6$

Since the difference necessary for significance on the .05 level is 14.6, the indication is that two of the lines modified with
teosinte characters are more tolerant to heat than the original line Tx4R-3. Whether tolerance to hest and to drought are related phenomena, as reported by some investigators, has not been determinea in this study. However, the yield tests, to be discussed in the following paragraphs, were conducted with that possibility in mind.
2. Yield tests. One yield test was conducted each year from 1943 to $194 \dot{3}$ on hybrids involving the group of Tx/k-3 lines tested for heat tolerance, and several tests were conducted on certain other groups. In all the yield tests, the uniform tester was a single cross, commoniy one with which the original inbred is combined when put into agricultural use. One or more checks were always included. Except where the contrary is indicated, one check was the original inbred crossed with the uniform tester, and various hybrids whose usual performance vas known were often used as supplements.

The most satisfactory results of yield tests were obtained with groups of lines other then $T \times 4 R-3$ and its modifications. Although results of the heat tests indicate that additional tolerence has been introduced into Tx/E-3 br crossing it with teosinte, no field test has shown convincm ingly that the yielding ability of any of the modified TxLR-3 lines should be adjuaged superior to that of the original. Tests conducted during 1945 and 1946 showed only that some of the modified lines were in the sane olass with the originel $T x 4 R-3$ and that others were inferior. As would be expected, one or more nodified lines gave actual yields greater than the original $T x / R-3$ in each test conducted, but in none of these instances was the difference significant. It should be pointec out, however, that tolerance to drought did not have a fair chance to manifest itself in terms of yield in any test conducted on the Tx4R-3 group. In 1943 and 1944 the field tests were a failure, principally because of poor stands and accidental damage. In 1945 and 1946 there was no appreciable drought during the critical part of the season.

More interesting results of yield tests were obtained with a group of modified Txl27C lines. A smell portion of the results of the two tests conducted in 1945 and 1946 is shown in table II.

The 1945 test of the Txl27C lines contained 36 entries and the 1946 test contrined 25 entries. Since the two tests did not contain the same entries, but had only certain ones in common, it is imprecticable hore to combine all the results briefly in one table. However, the following trble coes include the highest-rielding entry and one check in each test. The lomest-yielding entry tabulated here from the 1945 test stood 14 th among the 36 in the test, and the lowest shown from the 1946 test stood loth among the 25 in the test, A blank indicates the omission of the entry from the test.

Table II.

Fedigree*	Average yield bu. per acre	
	1945	1946
42116-21-2	44.8	59.5
42116-25-3	42.6	
Tx. Hybrid No. 18 (Ck.)	40.6	
42116-15-2	39.4	65.7
42116-27-1	38.2	49.3
42116-28-5	37.0	55.4
42116-28-4		45.6
Tx127C (Ck.)		44.0
Difference for significence, . 05	7.26	9.75
Difference for signifioence, . 01	9.63	12.06

It may be observec from these results that some of the Txle7c modifiec lines, such as 42116-21-2 and 42116-15-2, show considerable promise. It is interesting that some of then gave improved yields during a season when there was no serious drought or other hazard to which teosinte is known to be especially tolerant. Of course there are possible explanations. It seems fairly probable that the introduction of teosinte germ plasm into Txl27C resulted in modified lines with more remote relationship to the tester, Renoteness of relationship between the two parents of a cross is often believed to be an inportent factor affecting hybrid vigor. Another possible explenation is simply that aditional "yield genes" have been acquired from teosinte.

A few teosintemodified lines of Tx132A and TxlO2A have been developed and tested, but the results to the present do not indicate appreciable improvenent in then.

Tnited States Department of Agriculture Plent Industry Station, Beltsville, Marylend

A pair of genes influencing the intensity of yellow encosperm color was reported in the Maize News Letter for January 31, 1944. Segregations of 3 dark yellow to 1 lenon yellow were obtained in selfed progenies. The gene in question vas closely linked with opeque-2 in chrono some 7. No symbol wes suggested. The situation with regerd to the genos for endospern color is not entirely clear. Five genes have been numberod and one or two additional genes apparently are known. It is suggested that the pair of genes discussed here be designated as $Y_{8} Y_{8}$.

During the past seeson data were obtained on a three-mpoint backoross test involving the cross $\frac{t+}{O_{2} \underline{V} \quad \underline{V}_{5}}$. These date are reported below:

Parentel combinations		Recombinations						
		Region 1		Region 2		Region 1 \& 2		
404	374	6	11	21	23	0		0
		17		44			0	
		2.0\%		5.2%			0.0	

The gene order indicated is $0_{2}-2.0 \%-y_{8}-5.2 \%-\mathrm{V}_{5}$.

Merle T. Jenkins

United States Department of Agriculture c.nd

Cornell University, Ithaca, New York

Natural teosinte-corn hybrids in Guetemale.

Teosinte occurs as a weed in corn fielas over extended areas in the Jutiap - Frogresso - Lake Retana area in south central Guatenala and in the San Antonio Huixta area in the northwestern part of the country. Botanists who have visitad these areas, including Weatherwax, Kempton and Fopence, noted the absence of hybrids in the fields where corn and teosinte were growing together and flowering a.t the same time. This bas surprising in view of the fact that the two species were known to hybridize readily under controlled conditions and their hybrids are fully fertile.

The Jutiapa - Progresso - Leke Retang area wes visited in

November, 1946, with Dr. I. E. Melhus, Director of the Iowa-Guatemala Tropical Research Center. A thorough search for natural hybrids was made in corn fielas containing teosinte as a weed extending for 40 kilometers along the highways in this area. No hybrids were discovered. Extensive collections of corn and teosinte seed were made from these fields and it is planned to grow this seec to determine whether natural orossing oocurred during the current season in fields observed to have corn and tensinte of the same stage of maturity growing in juxtaposition.

Subsequently, the San Antonio Huixta region was visjeter togethew with Dr. George Semenuik. As a result of an extended search in this area aproximately 30 hybrid plants were discovered. With very few exceptions all of these plants apparently were first generation hybrids having typical four-rowed ears. One hybrid plant with eight-rowed ears and one with precominantly two-rowed ears similar to the teosinte parent were found. Openpollinated seed from these plants was harvested for a study of the progeny.

An unsuccossful attempt to hybridize Guatemalan Tripsacum and corr.
Having been successful in obtaining hybrids between diploid and tetraploid forms of corn and Tripsacum dactyloides native in the United States, the possibility of obtaining similar hybrids involving corn and Tripsacum species which are native in Central Anerica was investigated. Tripsacum cactyloides is not known to occur in Latin America. Of the various species which do occur there, all that have been studied have proved to be tetraploids with approximately 72 chromosomes.

Since very special conditions are required to obtain hybrids of diploid Tripsacum dactyloides and diploid corn, the possibility seemed very remote that the tetraploid Tripsacum of Central Americe would hybridize with the aiploid corns of that region. However, in developing an hypothesis of the origin of modern varieties of cultivated corn based on the assumption that teosinte resulted from the hybridization of Tripsacum and corn and that the chromosome knobs and various other important characters of corn came from Tripsacum by way of teosinte, hangelsdorf and Reeves assumed that natural hybridization of Trirsacum and corn did occur in Central America. Hypotheses are of littlo velue unless they can be tested. Fortunately, a direct test of this kypctaesis, formulated nearly 10 years ago, involved no special difficulties. Tripsacum and corn were found to be in flower at the same timo in roadily cceessible areas in the neighborhood of Guatemala City and Antigua at alititudes of approximately 5,000 feet. liore than 200 ear shoots of native corn plants from three different fields were carefully polinated with Trirsacum rollen from plants collected in thotr natural habitat in the same region. In making pollinations by applying a mixture of Tripsacum and corn pollen directly to the bases of the corn silks and in culturing the embryos of resulting aborted seeds, the same technique was used that previously had beer successful at Ithaca in obtaining a considerable number of Tripscoummeorn hybrids. From three to four weeks after pollination each ear was oarefully scrutinized for possible hybrid seed, the embryos of sceds suspected of being hybrid were cultured in a storile nutrient agar and flown directly to Ithaca where their chromosone number was determined from root-tip counts. There were no hybrid seedings. All had 20 chromosomes.

This test failed to confirm the assumption of Mangelsdorf and Reeves that in the recent past Tripsacum and corn hybrids occurred in western Guatemala, subsequently designated by Mangelsdorf and Cameron as the secondary center of origin of cultivated naize. However, it would be desirable to make additional tests employing other species of Tripsacum which are found elsewhere in Central Americe, Also, a careful search should be made for diploid Tripsacums throughout Centrel America.

L. F. Randolph
University of Minnesota
University Farm, St. Faul, Minnesota

Linkage date on several unlinked characters were gathered and analyzed by graduate students.

1. The siliky which appeored in the F_{2} of a cross between two inbred lines segregated in an F_{2} to give a ratio of 15 normal : 1 si and approximately $3: 1$ in a backoross.

Red collar (base of tassel glumes) vs, green segregated 9:7 in F_{2} in one of these cultures. Based on small numbers, si was independent of red collar, sr, and ms (this ms was supposed to be gs but did not show linkage with sr, also the ears vere normal). Red collar was also independent of this scme ms and sr. This silky shows no linkage with msi.

Backcross tests indiceted no linkage between \mathcal{Y} and red collar, a result differing from that reported previously (News Letter 18:16-17. 1944 - P1 vs. red coller $=6.6$ per cent recombination). This difference is explainable if red coller is due to complementary factors.

Antonio Marino

I. 2. Hasanain
2. Woodworth's vp gives no evidence of linkage with msi. To determine the order of Y, $\overline{\mathrm{pb}}$, and ms ; all very closely linked, $Y+m s / X$ pbt plants were crossed with y pb ms/t. One y +ms and one y pb ms were obtained, suggesting that this is the order of the three genes.

I. A. Mciennan
F. H . White

3. One stock from X-ray treatment hes 10 chromosome pairs and about 20 per cent of pollen abortion. The sterility shows linkage with factors in chromosome 2: 43.5% with $\mathrm{gl}_{2}, 34.6 \%$ with B , and 15.5% with V_{4}.

Freliminary cytological examination reveals bridges with fragments, indicating an inversion is the probable cause of the sterility, and that the centromere is outside the inversion. The ears show normal fertility.

W. A. Russell

4. A survey of the knob numbers (and where possible the positions) in 20 inbrec. lines used in the breeding progrom here is being made to deteraine possible relationships with plant charecters and with combining ability. The knob number varies from two to at least eight.

M. V. Vachheni

The dominant white cap (W^{c}) endosperm factor is linked with brittle stalk (bk2) in chromosome $\overline{9}$, the backcross numbers being $135 W^{\text {c }}+$, $67 \mathrm{~W}^{\mathrm{C}} \mathrm{bk}, 65 \mathrm{~W}^{\mathrm{C}}+143 \mathrm{w}^{\mathrm{C}} \mathrm{bk}$, or 32.2 per cent recombination, With T $8-9 \mathrm{a}$ there was 30 per cent recombination ($W^{c}-T 8-9 a=18: 33: 68: 25$). Since tests reported previously indicated no linkage with waxy (News Letter 18: 16. 1944) the order appears to be $w-\underline{b k}_{2}-\mathbb{W}^{c}$; or $\mathbb{W}-T .8-9 a-\mathbb{W}^{\mathrm{C}}$.

A brown midrib character which appeared in a sh wx glo culture seems to be geneticelly different from the other three brown midribs, and therefore is bm_{4}.

Viviparous $\left(\mathrm{Vp}_{5}\right)$ is the same as Woodworth's vp as shown by intercrosses. Tests are in progress to determine the linkage group to which vps belongs. This will also locate one of the factors for yellow endosperm (unless yp itself causes the color effect),

Progress in building large rings (See News Letter 20:16. 1946).
The different rings of six chronosomes produced as the first step in the program were backcrossed to normals; the progeny were grown and examinec for pollen sterility. In each case, plants approximately 75 per cent sterile were identified. These should be carrying the crossover which combines the two parentol translocations in one gernete. Similarly, backerosses of the F_{1} e 10 from $1-5-6-7$ © 8 x 04 were grown. It is hoped that the selected ears repreaent the desired crossovers, but the sterility classes were more difficult to distinguish by the "pocket microscopel method used in the field.

Chromosone disjunction (Sce Nevs Letter 19:31. 1945).
In flants heterozygous for I $5-6 \mathrm{c}$, the low percentage of crossing over with the chromosome 5 inversion in the translocated chromosome as compared with the amount observed with the inversion in the normal chromosome can now be explained without resorting to "position effect", When Dr. A. H. Sturtevant saw the data, he suggested that the cytological data on crossing over (percentage frequency of the crossover type or "half disjunction" quartet) dic not measure crossing over within the inversion in both cases. When we urew the chromosomal diagrams (checked later) they
showed that this was true. When the inversion is in the translocated chromosome, crossovers within the inversion do not give rise to the cytologically recognizable "half-disjunction" quartets; wherens when the inversion is in the norncl chromosome these crossovers are recognizable in that manner. In the one ase these quartets result only from crossing over between the translocation break (center of the cross) and the new position of the centromere, consequently comparable to that in the stock heterozygous T 5-6c but homozygous for the inversion.

C. R, Burnham

Linkge data calculation (See News Letter 20:18. 1946).
Fisher (Amer. Nat. 80:568-578. 1946) has presented a simple method of scoring linkge dats by using maximum likelihood formulas. To make it readily understood, we have illustrated its application to F_{2} and F_{3} data comonly encountered in plant material (now ready to be submitted for publication). The formulas, for the scores (remainders) of maximum likelihood formulee when $p=o n e$ half is substituted (50 per cent recombination), are:

Souroe of data	Formules for scores (c) at $n=$ one half *	Information (i) per F_{2} plant or F_{3} line at $p=$ one half
Backoross	$2(a-b-c+d)$	4
F_{2}	$4\left(\frac{c}{9}-\frac{b+c}{3}+d\right)$	16/9
F_{3} from $\mathrm{Ab} \mathrm{F}_{2}$ plants	$4 / 3(k-2 j)$	32/9
F_{3} from $\mathrm{aB} \mathrm{F}_{2}$ plants	$4 / 3(m-21)$	32/9
F_{3} from $A B \mathrm{~F}_{2}$ plants	4/9(8e-f-g-h-i)	128/81
F_{3} from doubly hetero-. zygous F_{2} plants	$4(h-i)$	16
	* Suitable for repulsion, change signs for coupl	
By substituting the observed values for a, b, c, d, e, etc., the score (c) for each source of dete is obtainec.		
The total amount of information furnished by the data is ni,		
where \underline{n} is the number of plants or of F_{3} lines and i is the information		
per plant or line. Fisher shows that c^{2} / I is distributed as X^{2}. Each such c^{2} / I value for each source of data, having one degree of freedom,		
Then $\chi^{2}=(S c)^{2} / \mathrm{SI}$ tests the deviation from 50 per cent for the pogled		
data with one degree of	eedon. The difference χ^{2}	$=s\left\|\frac{c^{2}}{I}\right\|-\frac{(S c)^{2}}{S I} \operatorname{test}$

heterogeneity, the cegrees of freedom being ($N-1$) where N is the number of sources of data pooled. For this test a value of p sufficiently close to the best estimate of p should be used. The ratio $\operatorname{Sc} /$ SI provides an estimate of the correction to be applied to $\underline{p}=0.5$ to obtain the \underline{p} value which best fits all the sources of cata.

H. H. Kramer
C. R. Burnhen

Study and use of trisomics.

1. The frequency of transmission of trisomics without root-tip chromosome counts can be determined by crossing each trisomic with a homozygous translocation involving that chromosome. The trisomic F_{7} plants will show low pollen sterility ($25-30$ per cent) as compared with the 50 per cent shown by their diploid sibs. With experience the difference can be recognized easily even in the field with the "pocket microscope". I have used it satisfactorily for chromosome 6, using T 5-6a.
2. It would also be desirable to make the trisomic analysis usable by those not able to get chromosome numbers counted. At present only plants trisomic for chromosomes 5 and 7 are phenotypicelly distin. guishable in most crosses, but not in all,

Two tertiary trisomic stocks for each crhomosome might be established so that betveen them the entire chromosome in question would be ropresented in trisomic condition. If the piece of the attached non-homologue which is also trisomic came from chronosome 5 or 7, it might serve to identify the desired tertiary trisomic plants. Since these tertiaries would also differ fron primary trisomics by having approxinately 15 per cent of pollen abortion while the primaries would be normal, pollen examination could be used as a supplenentary check if desired or if the phenortypes were not distinct.

In plece of the 10 primery trisomics, 20 tertiery types would be used for a complete test of the 10 chromosome or linkage groups.

For example, the series might be established from $2 n+1$ (No. 1 chromosome trisomic) x T 1-5; 2n++ 1 (No, 2 chromosome trisomic) x T 2-5, etc., selecting the translocation in each case in which the broak in 5 was near the middle of the chromosome, assuming a plant trisomic for nearly half of 5 would bermost likely to be phenotypically distinct. Two tertiaries would be established for ench cross. A series with chromosome 7 also might be usable.

C. R. Burnham

Chronosome disjunction.

In discussing with many others the problem of getting lower sterility fron large rings, the possibilities of genic control were suggested. On this basis, a plenned seerch for factors affecting chromosome
behavior at meiosis, such as changed chiasma frequency or position, may be needed. Those studying inbrec lines for knob number might be on the lookout for such effects at diakinesis anci metophase. Such stocks would be of interest for ather problems also:

Since such factors are likely to be recessives, it will be necesscry to study selfed lines from X-ray treatment rather than the imnediate plants obtained from the use of X-rayed pollen. I wish to acknowledge the assistance of H. A. McKennan, F. H. White, and K. Hanson,

C. R. Burnham

University of North Carolina Faleigh, North Carolina

Effects of the major plant color genes upon kernel weight in maize.

Brink (1934) has demonstroted that maize plants belonging to the anthocyanin series of color types differ significantly in their average production of grain. Comparison of the four anthocyanin types led to the conclusion that purple was much inferior to dilute sun red, while dilute purple and sun red exceeded dilute sun red in average yield per plant. Subsequent unpublished results indicato that there is probably no significant yield difference between sun red and dilute sun red. Two trials in successive seesons in which dilute sun red (A b pl) and triple recessive green ($a \operatorname{b} p$) were compared, suggest that dilute sun rea has a significantly grenter yield.

In 1938 and 1939 the writer conducted thee adaitional experiments at Madison, Wisconsin, in an effort to clarify the status of those color types which had given inconsistent results and in order to include the brown class (a B) which had not occurred in earlier trials. A number of ans resulting fron the backoross $\operatorname{H}_{1}{ }_{1}$ Bb Plpl $\times \operatorname{an}_{1} a_{1}$ bb plpl were obtained. Two experinents, the first including 12 backcross families in three randomized replications and the second, with 18 families in two replications, were grown in 1938. A third experiment (12 families, 3 replications) was grown in 1939. The heterozygous A B Pl plents used in backerossing were not closely related to the a b pl stock and the segregating progenies exhibited considerable hybrid vigor. Five-eighths of the restdual heredity in each family was derived from comercial strains of yellow dent corn edonted to Southern Wisconsin conditions.

The plants were classified os to color type and distinctively tagged. No atternt was mode to distinguish the a B El and a b PI plants from $a b p l$ in the green cless. The frequencies of each type within each row were determined; the mature ears from each color group in a row were hervested together. The samples were dried to a unfform moisture content, shellod, and the sholled corn weighed to the nearest ounce.

The mean shelled grain weights per plant for each plant color class in experinents I and III appear in table I.

Table I.
Mean grain weights per plant by color classes

Phenotype	Experiment I (1938)		Experiment III (1939)	
	No. Plants	Mean in lbs.	No. plants	Mean in Ibs.
A B I (purpl `**	674	. $307(6)$	600	.282(6)
A b PI (dilute purile)	681	. 361 (3)	641	. 323 (2)
A B L (sun red)	694	. $355(4)$	686	. 318 (4)
Abpl (cilute sun red)	685	. 372 (1)	682	. 331 (1)
a B PI (brown)**	698	. 344 (5)	602	. 305 (5)
$\text { a } \mathrm{E} \mathrm{pl}, \frac{\mathrm{a}}{\mathrm{a}} \frac{\mathrm{pl}}{\mathrm{~b}} \frac{\mathrm{pI}}{\mathrm{p}} \text { (green) }$	2002	. 368 (2)	2000	$.319(3)$
Total	54.37		5211	

** Highly significant differences between this ind other classes.

The analysis of variance for each of these experiments reveals that the low yield of purple is highly significent in both cases and that brown with a significantly greater yield than purple is significantly below the yields of the remaining four classes. The relative standings of the six color types with respect to mean grain weight are indiceted by the numbers in parenthesis in table I. Dilute sun red has the largest mean in each experiment, the value being significantly ($P=.01$) greater than the pooled mean of the green, dilute purple and sun red classes in each case. In a combined analysis of experiments I and III the difference between dilute sun red and sun red is highly significant.

The results from experiment II are consistent with the other two experiments with respect to the purple and brown classes. The differences are again highly significant. The mean of sun red is secona highest in the experiment instead of fourth as in I and III. This high value for sun rod in experiment II is subject to question, however, for when the enalysis is besed upon kernels per ear instead of kernels per plant, sun red is fourth highest while the relative standings of the other are but slightly changec. In this experiment, also, sun red contributes disproportionately to the varience, The erfor term is larger than in the other experiments making it impossible to pool the results of experinent II with the others. A summery of experiment II and the total frequencies of chicolor type are presented in table II.

Toble II.
Mean grain weights por plant by color clesses

Phenotype	Experiment II (1938)		Total plants$I+I I+I I I$
	No. plants	Mean in 1bs.	
A B PI (purple) \% ${ }_{\text {\% }}$	806	. $320(6)$	2080
A $\underline{\underline{P}}$ ((diluto purple)	803	. 370 (3)	2125
$\triangle B \mathrm{LI}$ (sun red)	884	. 376 (2)	2264
A b LI (dilute sun red)	920	$.379(1)$	2290
E B Pl (bromn)**	848	. 345 (5)	2148
	2555	$.367(4)$	6558
Total	6816		17,465

** Highly sigrificent differences between this and other closses.

A chi-squaro test for the correspondence of the observed frequencies of plants in eack color class to the expected 1:1:1:1:1:3 backcross ratio reveals thet the frequencies shom in table II have a probability of . 01 . The largest deviations occur in the purple ciass which is smaller than expected and the dilute sum red class which is larger than expected. Since these are the classas which have the lowest and highest mean grain weights, respectively, it appears that the same genotypes which influence kernel weights alsc influence vinbility. Relatively large negative deviations also occur in dilute purvle and brown, while the sun red frequency exceeds the expected. It seems mrobable that the dominant gene, Pl, has an adverse effect upon vinbility.

Flants with the purple phenotype carry the three dominent genes \triangle B PI and are much less productive than those plant: i: Which one or more of these dominant factors is not present. The brown punta which have the genes B and $P 1$ are at a aimilar but less moxked disadyantage. The dominant genes were always prescnt in heterozygous condition. Since the presence of a single gene A is the only known condition which differentiates the purple from the brown type within a given fanily, it appears likely that this gene acting in conjunction with B and PI results in a decreased storage of starch in the kernels. In contrast it is found theit dilute purple, dilute sun red, sun red, and green, all have higher mean grain weights than brown. In the three anthocyanin color classes A iss present, but b, pl , or b pI are homozygous. The heterogeneous green class includes combinations of a with b, , or both in homozygous condition. Therefore, it may be concluded that the B PI gene interaction is effective in reducing the mean weight of grain per plant, presumbly by affecting starch storage
during development. The gene, A for anthocyanin pigment, in combination with B PI increases the effect.

The relatively higher yield of dilute sun red in all three experiments is noteworthy because this is the genotype which is virtually universal among North American varieties of dent corn. While the evicience is harcily adequate to demonstrate that this genotype is always superior in grain yielding potentiality, the fact that A b pl yields are probably significantly greater than those of $A B$ pl is suggestive. In sun red as in purple and brown the development of deeply pigmented tissues must immobilize considerable quantities of carbohydrate which might otherwise be stored in the seeds.

The posstbility that the results reported are actually caused by other genes, rather closely linked to the three segregating color genes cannot be entirely fejected on the experimental evidence now available. The foregoing conclusions are based upon a rather homogeneous samile of residual heredity tested in a single locality. Until further evidence is avallable on the point, however, it would be inadivisable to introcuce B and PI as markers in dilute sun red cormercial breeding stocks.

Ben W. Smith

University of S. Paulo
"Luiz de Queircz" School of Agriculture
Praci aba, A, Paulo, brasi

1. Breeding rrogram.

 hybrid corn and premature pidespread ure risht lead to a los" of valuable genetical and breeding material in the namerous local popuiaions. In view of these considerations, I heve tried since 1937 the frllowing prom gram of establishing homogeneous self-rragating populetana.

(b) Selfing during three to for genmatione ard atutiatwo of all pedigree lines which contain undersirable churactere.
(c) Sib and between-line crosses duarg about threre fearations; selecting the most vigorous combinations, elininetiag as briwic showing undesirable characters; and maintainine al amiljes thatery (pedigree).
(d) Thus, the final stage is reached afyer about feren to eight generations and all the selected families are unitec. into one population which is maintrinec by open pollimation sa simple mass selection for stock seeds.

Final results have been obtained by this method in establishing new sweet corn varieties: Piracicaba white P678, P18, orange P9, etc. Satisfactory, though only preliminary results have been obtained also with hard orange flint (cateto) and with yellow dent. After having essentially solved the question of procucing sweet corn for our climate, we are now concentrating on the hard orange flints.

The theoretical basis of the process "controlled pollintan-pedigree-breeding" is easily explained. It consists in producing a "opulation essentially homozygous for all desired characters, such es grain color and texture, ear size and form, plant height and relative position of ear (slightly above the midale of the plant); and heterozygous for tho main factors giving vigor. That such a combination of honozygosis and hoterozygosis is possible, was proved in indigenous corn which is on the one side vory homogeneous for many seed and plant characters, but at the same time extremcly susceptible to close inbreeding.

In Piracicaba sweet corn which is a new synthetic variety we have started the routine work of selfing in order to produce ultimately hybrid seeds.
2. Chemical composition of grain.

The following results were obtained in an analyses of a few of our varieties. The analyses were carried out by the chemists of the "Refinacốes de Milho Brezil, S.A." in Säo Faulo.

			Hard Flint		Dent	
			Cateto P-104	Cateto $\mathrm{P}-114$	$\begin{aligned} & \text { Dente } \\ & \text { P-111 } \end{aligned}$	$\begin{aligned} & \text { Dente } \\ & \text { P-113 } \end{aligned}$
Water	(Umidade)	\%	12.81	12.93	13.45	13.61
Irotein	(Proteina)	$\%$	10.33	8.58	3.84	8.84
0 il	(0leo)	$\%$	4.20	4.21	3.92	4.52
Sugar	(Acticar)	\%	0.60	0.68	0.83	0.79
Dextrin	(Dextrina)	\%	1.58	1.45	2.00	1.80
Starch	(Amido)	\%	66.98	68.60	67.71	66.89
Fiber	(Fibra)	$\%$	2.15	2.25	1.95	2.15
Ash	- (Oinze)	\%	1.35	1.30	1.30	1.40
Total		\%	100.00	100.00	$\overline{100.00}$	100,00
Sweet Corn Piracicaba						
			White	Orange	Horticulture	
	Umidade		21.48	11.63	11.95	
	Proteina		11.21	12.61	11.56	
	Oleo		7.61	6.74	7.99	
	Acuear		3.86	3.53	3.21	
	Dextrina		22.36	22.78	23.63	
	Amido		38.38	38.01	36.15	
	Fibra		3.10	2.80	3.25	
	Cinza		2.00	1.90	2.25	
	Total		100.00	100.00	100.00	

Note: The three samples of sweet corn contain about five to six por cent of soluble starch, inclucied in the total starch content.

The analyses were aarried according to "Food Inspection and Analysis" by Albert E. Leach, S.B. Fourth, 4 th edition, p. 304 .

There is evidently a very pronounced variation in oil and protein content. Piracicaba aweet coin contains trice as mach oju feven per cent) as the flints and dents. Tre protein conteat is aso ctirr high: 12 per cent of total weight or 13.5.per cent on wh wight in speet corn and 10 per cent in total weight or 11.5 per cent of dy wargt io one of the hard flints.

We hope to be able to carry out the analyses or, bergex sate this year.
3. Resistance against the grain weevil and moth.

A series of observations have shown beyond a doubt that one type of yellow dent (Monte Olimpo Plll) is reletively less attacked by these insects. The studies cre being continued.
4. Linkage tests.

The collection of linkage tests is now in the hands of Mr. Nelson Kobal, in continuation of the work by Dr. Graner who has left our Department. Some new lines have been incorporated and others are being oonstructed. We hope to furnish next year a complete list of our stocks. We expect also to be able from now on to furnish limited numbers of segregating ears for class work.
5. Tunicate.

The work on South American Tunicate is practically concluded. There seems to be no essential difference, either genetically or in phenotypic variability, between pod corn from Säo Paulo, Minas Gerais or Bolivia. There cannot be any doubt, as far as the seed formation in the tassel is concerned, that there is no difference between homozygous and heterozygous pod corn. Thus, there should not exist any difficulty in maintaining homozygous pod corn through the seeds in the tessel, without the necessity of using in acaition e tessel seed factor.
6. Collection of indigeneous corn.

The studies on suthentic indigeneous corn are being continued and I hope to publish soon the first results, together with Dr. Cutler. There seems now to be little doubt that one may classify to some extent native corn in accordance with the grouping of the Indian tribes. The main bulk of our collection has been furnished by tribes of the TupiGuarany group. There is comparatively little difference between the types cultivated by the Emeremhon (north of the smouth of the Amazon), the Cayabi and other tribes (North Mato-Grosso, almost in the midale of Brazil), the Poragayans and the Chiriguanos (Northern Argentina). The predominent types ore: Soft large-grained yellow (fleurone color); semi-hard white;
orange, variegated or red pericerp with some tendency towards dent. There are two rather primitive types; the large eers with flexible rachis and half-submerged grains from northern Mato-Grosso (Caiabi and Bororo Indians) and the small grained pointed pop corns of the Tupin Indians, which contain many "Tripsacoid" characters.

Both the corn cultivated by the Chavantes of Central Brazil and numerous types cultivated by the Cainguang of Parana in the South are completely different, without the predominance of yellow and orange types.

No explanation hes as yet been found with regards to the hard orange flints called in the Argentine and Urugaya "Colorado" 5 : "Quarantino", and in Sáo Paulo "Cateto". It may be extracto. of soft yellow and pointed pop.

The genetical analysis of the material is being contimued. In the color of red or purple ($\mathrm{Pr} / \mathrm{pr}$) aleurone as contrasted to colo:less; at least three factors are involved, one the dominant inhibitor Ci. There is at least one dominant inhibitor of yellow endosperm in pointed pop. Floury has more often a polyfactorisl basis, rather than the ample fl gene. Naxy seems rather common. Nothing as yet can be stated with certainty about the large number of plant, $c o b$ and glume colors. Rose or wood-colored husks are due to new alleles of the P-series.

The Mendelian ratios in Paraguay corn are all perfectly normal. In Bororo corn a gametophyte factor in the IX chromosome causes a deficiericy or excess of recessives.
7. Cytology and studies on sterility.

The material from the margins of the Amazon River is characterized by a considerable sterility and we hope to decide this year whether it is simply phenotypic or is a cytological complication.

In several lines of indigenous corn the pollen is heteromorphic or dimorphic.

In Cateto the frequency of different types of defective seed is remarkable. Nothing is known as yet about the frequency of B-chromosomes in this material, though we hope to get fuller information next year.
8. Origin of corn.

Since full accounts have been published no details need be given. Accepting the eastern foothills of the Andes from Peru-Acre down to the Chaco as the center of origin, there se evidently two main centers of domestication: The Quechua group in the Andes and the Tupi-Guaranis in the plains. This yeer new materjal from outside these regions will be studied; material from Southern Brazil and, in the north, meterial from Colombia.
9. Relations between corn and teosinte.

Both comparative morphological and genetic studies convinced me that teosinte is an independent genus, different from both Zea and Tripsacum. A full account is under publication.

The genetical analysis of Zea-Euchlaene hybrids continues. The phenotype of the F_{1} and the segregation in the F_{2} depend to a large extent upon the varieties used in the cross. Gorn characters are less dominant in the order: Piracicaba Sweet, Paulista Pod, Paulista Pointed Pop; and teosinte characters are less dominant in the order: Nexican teosinte and Guatemala teosinte.

In the F_{2} and subsequent generations many new combinations have appearec and I am trying to stabilize them; especially intermediate types and what may be called new teosinte "vorieties". Among the attempted combinations one may be especially interesting: The combination of corn ear characters and the resistance of teosinte against inbreecing.

The photo-thermo-periocicity of Euchleena is acther interesting. Using earliness in flowering as a measure, we may establish generally the following order from the earliest to the latest; Mexican teosinte, F_{1}, Corn F_{1}, and Guatemala teosinte. However, in the very rainy summer of 1945 and 1946 the order wes maintained with one exception. Mexican teosinte and all teosinte-like segregates in F_{2} or later generations became as late as Guatemale teosinte or later still, some not flowering at all; while the F_{1} hybrids retained their relative position as indicated in the sequence above. The corn-like segregetes and the intermediate forms behaved more or less like the F_{1} hybrids.

The analysis of individual gene segregations is under way with the intention of determining the intensity of gametophyte and of zygote eliminetion both of which are considerable.

10. Publications.

Since all of our papers heve been published in Journals with a limited distribution, I am including a list as follows:

Published papers.
1938 - F. G. Brieger - Problemas de melhoromento do milho. Revista Agr. 13:3-18.
F. G. Brieger - Hibridos de milho com referencia ospecial a precocidade. Revista Agr. 13:3-13.
F. G. Brieger e E. A. Graner - Variacoes quantitativas do milho "Sonta Rosal". Revista Agr . 13:3-24.
F. G. Brieger e E. A. Graner - Analise da precocidade no milho. Revista Agr. 13:3-17.
1943 - F. G. Brieger - Origen do milho. Revista Agr. 18:409m418.
E. A. Graner - Endosperme cmarelo do milho. Kevista Agr. 18:443445.

1944-F. G. Brieger - Estudos experimentais sobre a origem do milho. Anais Escola Sup. Agr. "Luiz de Queiroz". 1:226-278.
E. A. Graner e G. O. Addison - Meiose en Tripsacum australe Cutler e Anderson (T.dactyloides subsp-hispidum Hitchcock). Anais Escola Sup. Agr. "luiz de Queiroz", I:213-224.
1945-F. G. Brieger - Estudos geneticos sôbre o milho tunicata. Anais Escola Sup. Agr. "Luiz de Queiroz". 2:211-233.
F. G. Brieger - Competicāo entre Megaspörios em Milho. Ancis Escola Sup. Agr. "Luiz de Queiroz". 2:239-267.
F. G. Brieger - Estudos sobbre a inflorescência de milho com referencia especial aos problemas filogeneticos. Bragentia. 5: 659-716.
H. C. Cutler - Espiguetas de dois grēos no milho. Anais da Escola Sup. Agr. "Luiz de Queiroz". 2:423-430.
F. G. Brieger

1. The al gene (y_{3}) is seven units from lgI in chromosome 2. Its locus in relation to $\lg _{1}$ and gl_{2} is:

2. The X_{x} gene of Dr . A. M. Brunson, white seeds and albino seedlings (News Letters 18:2-3. 1944 and 20:23-25. 1946) is now called Y_{q} and is a new complementary to \underline{Y}_{1} and \underline{Y}_{3}. Crosses with \underline{y}_{1} and \underline{y}_{3} gave the following results:
(c) $\left.Y_{1} y_{1} Y_{3} Y_{3} Y_{7} Y_{7} B n b n\right)$

8

$\begin{gathered} \text { Pedigree } \\ (1946) \\ \hline \end{gathered}$	Classes	Seeds	Soedlings obtained		```Total of seedlings```
			Green	Albion (I_{7})	
11-19 (x)	Yellow-orange	240	231	5	236
	$\left\{\begin{array}{r} \text { Lemon-yellow } \\ (\mathrm{Bn}) \end{array}\right.$	101	5	70	75
	(White	100	59	25	84
Total		441	295	100	395

(b) $\left(\underline{Y}_{1} Y_{1} \underline{Y}_{3} y_{3} \underline{Y}_{5} \underline{y}_{5} \underline{Y}_{7} y_{7} B n b n\right)(x)$

$\begin{gathered} \text { Fedigree } \\ (1946) \end{gathered}$	Classes	Soeds	Seedings obtained			Total of seedlings
			Green	Alpessent	$\mathrm{A}_{\mathrm{X}_{7}^{\mathrm{bino}}}$	
	Yellow-orange	210	192	2	4	198
	(Yellow (\underline{Y}_{5})	59	0	51	1	52
153-10	Lemon-yellow(Bn)	75	1	0	69	70
	White	8	0	0	5	5
Total		352	193	53	79	325

Neither cross ahows indep dent segregtion for lemon-tellow seeds and albino seedlings. In some strains only the triplex and duplex seeds for lemon-yellow aan be separated from the white ones and if this should be the case, the lenon-yellow seeds would give about 50 per cent of green and 50 per cent of albino seedlings (3 green : 4 albinc). The $y n g e n e$ shows linkage with the lemon-yellow class. In cross (b) the yellow seeds $\left(X_{5}\right)$ also show linkgge with \underline{Y}_{7}.
E. A. Graner

University Washington Seattle, Washington

1. Catalogue of $A-B$ interchanges.

Ten interchanges between A-type and B-type chromosomes have been obtained from pollen treated with X-rays. In the list that follows, the A-chromosome involved in each interchange is indicated by the numeral in the symbol designating the interchange. The A-chromosome in one of the interchanges (TB-A?) is unknown and in another (TB-8?) the identification of chromosome 8 is based on a few rather poor pachytene figures and may be incorrect. The letters S and L refer to the short and long arm, respectively, of the A-chromome. The distance from the centromere to the point of breakage in the A-chromosome is given as the decimal fraction of the length of the arm in which it occurred.

Interchange

$$
\begin{aligned}
& \mathrm{TB}-1 a^{*} \\
& \mathrm{~TB}-1 b \\
& \mathrm{~TB}-4 a \\
& \mathrm{~TB}-6 a \\
& \mathrm{~TB}-7 a \\
& \mathrm{~TB}-7 b \\
& \mathrm{~TB}-8 ? \\
& \mathrm{~TB}-9 \mathrm{a} \\
& \mathrm{~TB}-9 b \\
& \mathrm{~TB}-\mathrm{A} ?
\end{aligned}
$$

Breakage Point in A-chromosome
L. .2-. 3
S.1.
S. 2
within nucleoler-organizing body
L. $9+$
L. 3
L. . 3- .4
L. 5
S. $4 \pm$
unknown
*The interchange was originally thought to involve chromosome 2 and was listed as T2-B in Maize News Letter 16: 1942.

The points of breakmge in the B-type are as follows: In TB-la, $T B-4 \mathrm{a}, \mathrm{TB}-7 \mathrm{a}, \mathrm{TB}-7 \mathrm{~b}$, and $\mathrm{TB}-8$?, they are at or near the junction of the euchromatic and the distal heterochromatic regions.. In the others, excluding TB-A? for lack of evidence, the breaks are well within the heterochromatic segment.

2. Behavior of $A-B$ interchanges.

The genetic behavior of $T B-1 a, T B-1 b, T B-4 a, T B-7 b$, and $T B-9 b$
has been investigated in some detail. The results were essentially the same for all five interchonges and can be surakrized as follows: The interchenge chromosome $B^{L /}$, which carries the centronere and proximal portion of the B-type and a distal segment of A-chromatin, undergoes nondisjunction in the division of the generative nucleus. The result is that the gemetes of a single pollen grain are not alike. One is deficient for the B^{h} chromosome; the other carries it as a duplication. Both ganetes are functional.

When plants that are nomal are pollinated with pollen of this kind, two types of seeds are obtained: (1) One has a hyperploid (for B^{2}) embryo and a deficient endosperm; (2) the other has a deficient embryo ald presumably a hyperploid endosperm. If the normal plant used in this cross carries a recessive endosperm gene, the dominant of which is present on the B^{A} chronosome, the deficient endosperm can be identified by the appearance of the recessive character. Thus, sugary kernels are obtained fron the cross, Normal (su su) x TB-4a (Su Su). The hyperploid and deficient embryos have been identified by both cytological and genetical methods.

The interchonge chronosome (A^{B}) carrying the h-centronere shows regular behevior in the division of the generative nucleus. Both interchange chronosomes are transmitted in normal fashion through the eggs.

The rate of non-disjunction, as estimated from the results of crosses involving $T B-40$ and $T B-9$, is very high, approcehing 100 per cent. In other words, the B^{A} chronosome undergoes non-disjunction in the division of necrly every generative nucleus. It seems to be quite reguler in behevior in the meiotic divisions and in other mitoses.

3. Genetic location of breakage points.

The location of the point of breakage in the A-chromosome of an A-B interchenge nay be determined genetically if appropriate recessive testers are used. This has already been illustrated in the case of TB-4a, using the sugary gene. If the corresponding dominant allele is distal to the point of breakage (i.e., in the $\mathrm{B}^{\boldsymbol{A}}$ chromosome), the deficient F_{1} progeny will show the recessive character. If it is proxiral to this point, the dominent charscter will appear. The following table gives the results which heve been obtained for interchanges tested in this way.

Interchenge
TB-1a
TB- -4 a
TB-7b
TB-9b

Foint of Breckage

Froximal to f
Proximel to su
Between v_{5} and ra Between sh and wx

4. Evidence of selective fertilization.

A pollen grain in which mitotic non-disjunction has occurred has one gamete lacking a BA chromosome and another ganete carrying it in tro dosos. In the double-fertilization process, either gamete may fertilize the egg; the other fuses with the poler nuclei. If fertilization can
occur in either direction at random, we would expect the two types of seeds described in Section 2 to be formed in equal numbers. The frequency of either type would not be expected to exceed 50 per cent of the total progeny, a value corresponding to a rate of non-disjunction of 100 per cent.

In some of the crosses between nomal fenale parents and mile parents honozygous for either TB-4a or TB-9b, the percentage of seeds with a deficient endosperm was far in excess of 50 per cent. In the crosses involving $T B-9 b$, a c-tester stock, homozygous for sh end wx es well, was used as the seed parent. The interchenge chromosomes comprising TB-9b carried the corresponding doninant alleles. Wx was present in the 9^{B} chromosone, \mathbb{C} and Sh in the B^{9} chromosome. The F_{1} seeds with en endospara deficient for B^{9} were colorless, shrunken, and starchy.

It was thought, at first, that the excessive number of seeds with a deficient endosperm indicated an outright loss of the B^{2} chronosome in some of the second microspore mitoses. Suppose that the BA^{A} chronosome lags in this division and is lost to both gametes. Each occurrence of this kind nould produce not only a deficient endosperm but also a deficient embryo in the sone seec. This result could be distinguished recdily fron the result of non-disjunction by on examination of the plants obtained from these seeds.

A cytological examination has not yet been accomplished. A genetic test was possible in the croases involving TB-9b, through the use of scutellum color as an indicator of the presence of \underline{C} (and therefore B^{9}) in the embryo. The scutellum is colored when \underline{C} is present in addition to certain other factors, and is colorless in its absence. Sone of the ctester plants used in these crosses were honozygous for the complementary factors. The F_{1} seeds with colorless endosperm were examined for scutellum color and the following results were obtained.

Cross	Colorless enciosperm Colored scutellum		Colorless scutellum	Colored endosperm	Colorless endosperm
$119-11 \times 96-8(T B-9 b)$	227	5	121	66	
$119-4 \times 96-8$	95	1	52	66	
$119-3 \times 96-23$	129	0	99	57	

It is evident from these data thet the hypothesis of "outright loss" is untenablo as on explenation of the excessive frequency of colorless kernels. The colered acutellum in seeds with a colorless endosperm shows that B is present in the embryo but absent in the endosperm. This would be expected fron mitotic non-disjunction. The six exceptional colorless seeds may represent orrors in classification since scutellum color veried in intensity end wes faint in some embrros. It is also possible that they ore due to heterofertilization. The F_{1} seeds will be grown this summer for a further check of their constitution with respect to B^{9}.

The results so far point to the conclusion that, in some crosses at least, the reciprocal types of couble-fertilization do not occur with equal frequency, There is a marked tendency for the hyperploid gamete to fertilize the ege and the deficient gamete of the same pollen grain to fuse with the polar nuclei.

Hfect of the dely illele on seed development.
The de 17 allele in corn reduces kernel weight to 25 per cent of normal, or less. It shows reguler Mendelion tranamission. A fair proportion of seeds on the best ears are viable. Once past the seedling stage delr indviduals develop into vigorours ond fertile plents which, however, are about one foot shorter than their normal sibs. The stock has been propagated in honozygous condition for several generations.

Defective anc normel kernels are obtcinable at will by pollinating de ${ }_{17}$ plants with de $_{17}$ and De $_{17}$ pollen, respectively. De ${ }_{17}$ kernels develop as well on de 17 plants as on normals. Defective and nurnal caryopses increase in weight at the same rate up to nine days after pollination. At 12 days the defective kernels heve fallen slightly behind the normals in dry weight. The difference is much larger at 16 days, and continues to increase rapidly up to 24 days beyond which time the defectives make little growth.

Histological studies reveel a relationship between the initial divergence in weight of the two classes of kernels and the differentiation of an absorbing region in the encosperm. Between six and 12 days the cells on the basal surface of the endosperm facing the placental region in normal kernels becone elongated, the nuclei nove to the inner end of the cells, and the cytoplasm assumes a dense, fibrillar appearance. The basal cells of the endosperm in defective seeds cio not become similarly transformed into absorbing elements. Rather, they enlarge about equally in all dimensions and become highly vacuolate, A fem days later the cells in this region in defectives begin to break down. Eventually meny cells in the besal area and in the adjoining contral region of the endosperm collepse and thus becone entirely non-functional in the transfer of nutrients to the seed.

The parenchymatous cells of the placenta are quickly and extensively depleted of their total contents by the regularly differentiating normal endosperm. The corrosponding cells in kernels possessing defective endosperms are more slowly and less completely depleted. The difforence apecrs to be c direct function of the absorptive capacities of the normal and defective endosperas.

A definite conclusion connot be reached from the ovailable data whether the dely allele exerts a direat parallel retion on endospera and embryo, or acts directly on the endosperm only. The severely restricted development of the defective endosperm in itself is sufficient to account for the failure of many of the associated embryos to reach a viable condition and for the others to yield weak seedlings. The somewhat shorter stature of adult de ${ }_{17}$ plants, as compared with their nomel sibs, may be due either to the handicap incurred at the seeding stage because of poor seed development or to this factor plus a continuing but only mildiy deleterious effect of the deg7 allele on later growth.
R. A. Brink
D. C. Coopar
II. MAIZE PUBLICATIONS -- 1946
(Including eertain 1945 publications not previously listed and some early 1947 publications.)

Altstatt, George E. A new corn aisease in the Rio Grande Valley. Plant Dis. Feporter 29(20):533-534. 1945.

Anderson, E. and J.J. Finen. A preliminary check-list of pop corn varieties. Mo. Bet. Gard. Mineographed pp. 16. 1946.
$\therefore \quad$ Corn before Columbus. Fioneer Hi-Bred Corn Company Mise. Pub. 1947.

- Maize in Mexico - a preliminary survey. Arn. Mo. Bot. Gard. 33:147-247. 1946.

Anonvmeus. Corn hybrics still fncreasing: Release acreage for other crops. V.Ś.D.A. Bur. hgr. Ee. Mineogrephed pr. 2. July 11,1946. . Better corn from improved parents. Seed World 60(5):42. 1946.

- Corn goes home; Iowa State College Guatemaia Tropical Research Center. Time 47:90 March 4, 1946.
- Corn hybrias recomendea for production in ontario - 1946. Supp1. Pamph. Dom. Gen. Dopt. Agr. 22: pp. 2. 1946. - Emergency storge of corn. Broeäers Gaz. 111(11):9. 1946.
- Hybria corn: Percentage of total corn acreage planted with hybrid seed, by stetes, 1933-1946. Crops \& Markets 23(7):123. 1946. . New findings on corn breeding. Seed World 59(6):58-59. 1946. . Signal growth potential soakea corn grains. Sci. N.L. 49:361. Tune 8, 1946.
. Sweet corn in Dixie. Market Grovers Jour. 75(2):27ff. 1946.
. The prolific hybride. The Forn Querterly I(4): 44ff. 1946.
Arnold, E. H. Meize. N. Zeal. Jour, Agr. 73(1):59, 61. 1946.
Barre, H. J. Drying seed corr ears with forced heated air. Elec. World 125:103-104. April 27, 1946.

Bliss, Laura and Nollie M. Naylor. The phosphorylase of waxy naize. Cercal Chem. 23(2):177-186. 1946.

Borlang, N. E. Disecses of tcosinte in Moxico. Phytopath. 36: p. 395. 1946.

Burnham, C. R. "Oenothera" or multiple transz cation method of establishing homozygous lines. Jour. Amer. Soc. Agron. 38(8):702-707. 1946

Calawell, A. C. and J. M. MacGregor Fotash-nitrate relationship in corn as revealed by tissue tests. Better Crops 29(10):13-14+. 1945.

Cameron, James W. A study of the genic control of carbohydrates in maize endosperm. Genetics 32(1):81. 1947.

Carter, G. F. Origins of American Indian agriculture; races of corn. Amer. Anthrop. 43(1):2-10. 1945.
....................... of plants in geography; corm regions in the Anericas. Geog. Rev. 36(1):122-130. 1946.

Cates, J. S. Raising corn with less work. Country Gent. 116:18t. Oet. 1946.

Choudhri, R. S. and R. Krishan. Sex differentiation in Zea Mays. Sci. \& Culture 11(9):472-476. 1946.

Crosier, Willard. Chemical control of seci-bome Punci durirg germination testing of peas and sweet corn. Phytopath. 36(2):92-97. 1946.
\qquad . anc stewart Patrick. Arasor for control of fungi in germinting corn seed. Phytopath. 30(2): 162-164. 1946.

Cumingham, J. C. Your corn has come a long way. Successful Farmer 44 (12):28-29. 1946.

Curtis, J. J. and F. R. Earle. Anslyses of double-cross hybrid corn varieties produced on farms. Cereal Chem. 23(1):88-96. 1946.

Cutler, Hugh C. Races of maize in South America. Bot. Mus . Ledflets, Harvard Univ. 12(8):257-291. 1946.

Davis, B. H. and C. M. Heenseler. Seed protectants on sweet corn in relation to plant vigor. Plant Dis. Reporter 30(6):199-200. 1946.

Dodds, K. S. and N. W. Simmonds. A cytological basis of sterility in Tripsacum laxum. Ann. Bot. 10:109-116. 1746.

Dody, D. M., lierlin S. Bergdoll, Harold A. Nawh and A. R. Brunson. Amino acics in corn grain from several single oros? hybrids. Cereal. Chem. 23(2):199-209. 1946.

Dungan, George H. Distiribution of porn planis in the field. Jour. Amer. Soc. Agron. 38(4):318-324. 1946.
, J. H. Bigger, A. L. Lrag, Benjamin Koehler and R. W. Tugenheimer. Illinois hylrici corn tests, 1945. Bul. J111nojs Agr. Exp. Sta, 517:225-256. 1946.

Eaton, Frank M, and Neil E. Rigler. Influence of carbohydrate levels and root-surface microfloras on Fhymetotrichum root rot in cotton and maize plants. Jour. Agr. Fes. 72(1): 137-162. 1946.

Elliott, Charlotte and Merle T. Jenkins. Helminthospcrium turcicum leaf blight of corn. Phytopath, 36(8):660-666. 1946.

Eyster, H. C. Theoretical aspects of hyorid corn genetics and hybrid vigor. Genetics 31(2):215. 1946.

Fogel, Soymour. Allelic differentiation and correlations in gone action. Genetics 32(1):86. 1947.

- Gene action anc histological specificity of pigmentation patterns of certain R alleles. Genetics 31(2): 215. 1946.
- Gene action and the course of anthooyanin synthosis in certain R alleles (in maize). Genetics 31(2):216. 1946.

Giles, Norman H., Jr., P. R. Burkholder, Ilda MeVeigh and Katherine S. Wilson. Comparative studies on the B-vitamin content of trisomio and disomic maize. Genetics 31(2):21.6-217. 1946.

Gilly, C; L. and I. E. Melhus. Distribution and variability in teosinte. Amer. Jour. Bot. (Suppl.) 33:235. 1946.

Graner, E. A. Testes para a localizaçâo de fatores genéticos no milho. Testes de Ligacão. Rev. Agr., Piracicaba 21:8-20. 1946.

Green, John M. Comparative rates of pollen tube establishment in diploid and tetraploid maize. Jour. Hered. 37(4):117-121. 1946.

Heagen-Smit, A. J., W. B. Dandiker, S. H. Wittwer and A. E. Murnoek. Isolation of 3-indolacetic acic from immature corn kernels. Amer. Jour. Bot. 33(2):118-120. 1946.

Honson, L. E. Waxy corn versus non-waxy corn for growing fattening pigs in dry lot. Jour. Anjmal Sei. 5(2):36-41. 1946.

Harland, 3. C. A new method of maize improvenent. Trop. Acr., Trinidad 23(6):114. 1946.

Eayes, H. K., E. H. Rinke and Z. S. Tsiang. Exparimental study of convergent improvement and backorossing in corn. Tech. Bul. Minnesota Agr. Exp, Sta. 172.1m40. 1946.

Hayne, D. W. Relation between number of ears opened and the amount of grain taken by red-wings in corn fields. Jour. hgr, Res. 72(5): 289-295. 1946.

Heyne, E. G., A. L, Clery. C.F. Prtaf. W. O. Scott. and C. D. Davis. Kansas corn tests, 1945. Bul. Kensas Acr. Exp. Sta. 329 pp. 40. 1946.

Hoekzena, J. P. Hybrid seed corn tekes over in Guideland. Farmers' Guide 102(9):18. Mey 1, 1946.

Hull, Fred H. Overdominence and corn breeding where hybrid seed is not foasible. Jour. Amer. Soc. Agron. 38(12): 1100-1103. 1946.

- Plant breeding in relation to soil fertility and climate. Better Crops 30(10):12-14. 1946.
- Regression analyses of corn yield data. Genetigs 31(2): 219. 1946.

Kurt, E. F. Maize for table and poultry feeding, a dual purpose hybrid. Jour. Royal Hort. Soc. 71:138-141. 1946.

Jenkins, M. T. Report of the First Northeastern Corn Improvenent Conference. Comecticut Lgr. Exp. Sta., New Haven, Connecticut. Feb, 2-3, 1945. Div. Cereal Crops Dis., Bur. P]. Ind., Soils, Agr. Eng., Pl. Ind. Sta., Beltsville, Maryland. pp. 21. 1945. (Mimeographed).

Report of the Fourth Southern Corn Improvement Conference. Birmingham, Alebama. Jan. 24-25, 1945. Div. Gereal Crops Dis., Bur. P1. Ind., Soils, Agr. Eng., Pl. Ind. Sta., Beltsville, Maryland. pp. 43. 1945. (Mimeographed).

Keeney, L. G. Fire hazards relating to hybrid seed corn. Agr. Eng. 26 (2):74-76. 1945.

Kunze, R. E. New slant on hybrid seed corn. Ohic Farm Bur. News 26(2): 30-31. 1946.

Leng, A. L. Effect of fertilizer and soil fertility on corn quality. Soed World 61(2):18--21. 1947.

Langham, D. G. and others. El maiz en Venezuela y su mejoramiento. Tubl. del Ministerio de Agricultura y Cria Bul. 1. pp. 59. Moy, 1945.

Laughnan, Jom R. Chemical studies concerned with the action of the gene 11 in maize. Cenetics 3I(2):222. 1946.

Livingston, J. E. Charcosl rot of corn and sorghum. Res. Bul. Nebraska AET. Exp. Sta. 136. I-32. 1945.

Lowe, Jeanette and Oliver E. Nelson, Jr. Miniature seed - a study in the development of a defective caryopsis in maize. Geneties 31(5): 525-533. 1946.

Malaini, G. Studio comparativo sui granturchi coltivati nelle Venezie nel 1942 - Comunicazione preliminare. Genetica Agraria, Fone 1:95-102. 1946.

Mangelsdorf, Faul C. The genetic nature of teosinte. Genetics 32(1): 95-96. 1947.

Mengelsdorf, Paul C. The origin and evolution of maize. Advances in Genetics. Vol. 1 Acedemic Press, New York. 1947.
anci R. G. Reeves. The origin of maize: Present status of the problem. Aner. Anthrop. 47(2): 235-243. 1945.

Marino, A. E. Aspectos de colidad en el maiz argentino. Granos 9(4/6): 21-27. 1945.

Mather, K, ana E. C. Barton-Wright. Nicotinic acia in sugary and starchy maize. Nature (London) 157(3978):109-110. 1946.
Mazoti, L, B. Contribución a la genética del maiz. Rev. Argent. Agron. 12:174-202. 1945.

McClintock, Barbara. Cytogenetic studies of maize and neurospora. Carnegie Inst. of Washington Year Book 44, for the year 1944-45: 108-112. 1945.

Mckeon, C. J. Maize aeed selection. Qd. LEr. Jour. 60:261-268. 1945.
McLaughlin, J. Harvey. Southern cooperative corn disease research comittee report for 1945. Plant Dis. Reporter 29(28):722-729. 1945.

Mivickar, M. H. and G. M. Shear. Variations in response of different varieties and hybrids of fiold corn to planting rate, Jour. Amer. Soc. Agron. 38(10):933-935. 1946.
and T. N. Starling. The 1945 official Virginia varietal tests of corn hybrids, barley, oats and wheat. Virginie Acr. Exp. Sta. Bul. 383. 1-16. 1945.

Melhus, I. E., G. Semenjuk, J. R. Mallin, G. M. Watkins and G. J. Goodnan. Comparative development of some United States, Moxicen end Central Anerican corns at different latitudes and altitudes. Aner. Jour. Bot. (Suppl.)33:220-221. 1946.

Miles, G. F. Slurry methoci for treating seed corn, Ag. N. Letter 14(7): 71-74. 1946.

Miles, S. R. Performance of corn hybrids in Indiana, 1937-1944. Indiena Agr. Exp. Sta. Bul. 511. 1-53. 1946.

Myburgh, S. J. Biologicel values of the protains of some South African (whole seed) maize varieties. Onderstepoort J. 21:59. Merch, 1946.

Nagel, C. M. and G. Semeniuk. Some mold-induced chenges in shelled corn. Plant Physiol. 22(1): pp. 20-33. Jan. 1947.

Nelson, O. E.,Jr., and H. S. Burr. Grouth correlates of electromotive forces in maize seeds. Proc. Nat. Acad. Sci., U.S.A. 32(4): 73-84. 1946.

Phinney, B. 0 . Cell length in the parenchyma of the midrib of normal and dwarf-1 maize at varjous stages of development. Aner, Jour. Bot. (Supp1.) 33:222-223. 1946.

Eirovano, Alberto. Progress and directives regarding electromenctics. Internatl. Rev. Agr. 36:173T-189T. Nov./Dec. 1945.

Plank, F. K. Contrcl of storage insects in corn seed. Jour. Econ. Enton, 39(6):314-319, 1946.

Porter, John W.; F. M. Strong, R. A. Brink and N. P. Nesil. Carotene content of the corn plant. Jour. Agr. Res. 72(5):169-187. 1946.

Reeves, R. G. Hethods for stuaying the maize ear. Bot. Gaz. 107(3):425. 1946.

Rhoades, M. M. Crossover chromosones in unreduced gametes of asynaptic maize. Genetics 32(1):101. 1947.

Richoy, Frederick D. Corn cob fur. Jour. Hered. 37(3):25I-252. 1946.
\qquad Agron. 38(9):833-841, 1946.
- Multiple convergence as a means of augmenting the vigor and yield of inbred lines of corn. Jour. Amer. Soc. Agron. 38(10):936-940. 1946.

Robinson, J. L. and F. Reiss. The 1945 Iowa corn yield test. Bul. Iowa Agr . Exp. Sta. P79. 600-642. 1946.
Sanchey, Colin S. El maía y la experimentatión agrícola. Campesino More1 1(20/21):1,11-12. 1946.

Sass, J. T. Develoment of enc̉osperm and antipodal tissue in "Arcentine waxy" maize. Amer. Jour. Bot. 33:223. 1946.

Schaible, P. J. Composition of certain hybria and open-pollinated corns and their perfornance in poultry rations. Michigan Agr. Exp. Sta. Quarterly Bul. 29:31-39. 1946.

Schopmeyer, IF. H. Amioce. The starch fron wexy corn. Food Indust. 17(12): 1476-1478. 1945.

Semeniuk, B., C. M. Nagel and J. C. Gilman. Obscrvations on mold developmont and deterioration of stored yellow-dent shelled corn. Iowa Agr. Exp. Sta. Res. BuI. 1946. (Sumitted for publication.)

Shedd, C. K. Resistance of ear corn to air flow. Agr. Eng. 26(1):19-20, 23. 1945.

Shull, George Fiarrison. Hybria seed corn. Sci. 103(2679):547-550. 1946. - Pure line nethod of corr breeding. Seed World 59 (6):8-11. 1946.

Singleton, W. Ralph. Inheritance of inceterminate growth in naize. Jour. Hered. 37(2):61-64. 1943.

29-30. 1946.
"Long Husk" sterility in maize. Jour. Hered. 37(1):

Smith, G. M. Inproved Golder Cross Bantan and Purgold sweet corn. Indiana Agr. Exp. Sta. Bul. 513. 1-4. 1946.

Smith, Luther, A comparison of the effects of heat and X-raye on dormant seecs of cereals, with special reference to polyploidy. Jour. Acr. Res. 73(4):137-158. 1946.

Sprague, G. F. The experimental basis for hybrid maize. Biol. Rev. Cambridge Phil. Soc. 21(3):101-120. 1946.

Stadler, L. J. Spontaneous mutation at the R locus in maize. I. The aleurone color and plant color effects. Genetics 31(4):377-394. 1946.

Standen, J. H. A toxic substance occurring in certain majze cobs, Contr. Boyce Thompson Inst. 14(4):277-281. 1946.

Steel, K. Revolution in the corn belt. Herper 191:159-163, August, 1945.
Sylvain, Pierre Georges, Correlative development of the ear shoot of maize. Iowa State Coll. Jour. Sci. 20(I):49-52. 1945.

Thone, F. Hybrid corn. Sci. N. L. 50:222. October 5, 1946.
Ullstrup, frnold J. An undescribed ear rot cff corn coused by Pbysalospora zoae. Phytopath. 36(3): 201-212. 1946.
\qquad - and Arthur A . Brunson. Linkage relationshins of 0 Eene determining susceptibility to a disease in corn. Phytopath. 36:412. 1946.

Viets, F. G., Jr., A. I. Mcxon and E. I. Whitehead. Nitrogen metabolista of corn as influenced by amonium nutrition. Plant Fheriol. 21 (3):271-289. 1946.

- The role of anino acids and amides in the metabulism of amonium absorbed by Zea mays. Sci. n.s. 102:587-589. 1945.

Walker, C. Maize growing for grain. New Zealand Jour. Aer. 72:281-299. 1946.

Walter, E. V. and Arthur 1 . Brunson. Selection for aphid resistance within inbred lines of maize. Jour. Ancr. Soc. Acron. 38(11): 974-977. 1946.

Went, F. F. Enbryological developnent of inbred and reciprocal hybrid Zen mays I. Aner. Jour. Bot. (Supp1.)33:224. 1946.

Weshko, J. B. Fotash deficiency in erowing corn. Com. Fert. 73:32. 1946.
Weathervax, F. Corn for morhhological and genetic work. Genetics 31:235. 1946.

Moaver, Farry Lloyd. A developmental stuay of maize with partiouler reference to hybria vigor. Amer. Jour. Bot. 33(7): 615-624. 1946.

Wernhan, C. C. Three hjtherto unreported diseases of corn in Fennsylvania. Plant Dis. Reporter 30(I) 26-28. 1946.

Wiacakas, W. anả L. 4 . Jensen. 1945 hybrid corn field trials. Agron. Mimeo. Cir. North Dekota Agr. Exp. Sta. 77. pp. 20. 1946.

