MAIZE GENETICS COOPERATION

NEWS LETTER

5

January 25, 1934

703

New York State College of Agriculture at Cornell University Cornell University agricultural Experiment Station

ITHACA, N. Y.
vol. 5

January 25, 1934

To maize geneticists :-
The inventory of genetic stocks which comprises the bulk of this letter is, of course, not complete but it will serve as a basis for future and more extensive lists. We wish to thank those maize geneticists who have cooperated in making this inventory possible. Its value should be apparent to everyone. In a plant such as maize where it takes several years to build up a required stock for a certain experiment, it is essential that the list of existing stocks be kept up to date and be available so that the investigator can make use of these stocks.

No attempt has been made to credit the stocks to different investigators. Those stocks which are marked with an asterisk are those which have not been received here at Comell. It by no means follows that those stocks which are not marked by an asterisk were synthesized here at Ithaca. In the past we have received so many stocks from different cooperators that an attempt to trace the origin of the different stocks seemed a hopeless task. So we have purposely avoided listing the origin of any of the stocks. This does not give the credit due those investigators who have spent a great deal of time in building up good genetic strains. In the future we shall try to remedy this condition.

In order that this laboratory may serve efficiently as a distributing center for genetic strains, we urge those of you who have the stocks marked by an asterisk to send a small amount of seed to us so that it can be increased for distribution.
st the Boston meetings a. system of nomenclature was agreed upon by representatives of the Drosophila and maize groups. This proposed system, as it applies to maize, is submitted in this report for your consideration and your criticisms and suggestions are requested. It was agreed that the needs and requirements of maize and Drosophila genetics were so diverse that it would be unwise to attempt to formulate an identical system of nomenclature. Yet in the matter of symbolizing genes, designating translocations, deficiencies, etc., it was felt that a uniform system could be employed with advantage, and the symbols which are used in the proposed systom were agreed upon by the representatives of the two groups.

It should be clearly understood that the proposed system is only tentative. It can and will be modified in any way that will make for a better and more useful system.

The proposed nomenclatorial system for maize is as follows:

1. The linkage groups will be designcted by frabic numerals. Group 1 will include those genes which lie in the longest of the monoploid set of 10 chromosomes, etc. The longest chromosome will be called chromosoine 1 and the shortest chromosome 10. Arcbic numerals will be used for both linkage groups and chromosomes since the Roman numerals are too cumbersome.
2. Whenever biliteral symbols are used the second letter shall not be dropped $2 s$ a subscript. Italicize gene symbols.
3. Litcral superscripts shall bo usea to represent different members of an allelomorphic series, em., $\underline{R}^{r}, \underline{R g}, \underline{r}^{r}, \underline{f^{\prime}}$.
4. Numeral subscripts shall be used to represent different genes which give phenotypically similar effects, e.g., V1, V2, VZ, etc.
5. The normal allelomorph of a mutant gene shall be designated by the use of the + sign as a superscript, e.g., the normal allelomorph of sugary (su) will be su ${ }^{+}$, and not'su or + . The plus sign alone may be used for normal allelomorphs in such genotypic formulae as $\frac{++}{\text { su Tu }}$, but these allelomorphs should be designated as indicated above when the formule is written as su ${ }^{+}$Tu $^{+} /$su Tu.

This suggestion was made by the Drosophila group and we believe it meritorious. It enables one to tell whether the mutant gene is dominant or recessive to the normal or average condition. And, too, the normal gene is nothing more than an allelomorph of the mutant one.
6. The letter T (italicized) shall denote reciprocal translocations or segmental interchanges. $T(1-2)$ would represent the first case of a reciprocal translocation between chromosomes 1 and 2, $I(1-2)_{2}$ the second, etc. Numeral subscripts instead of literal ones are recommended to denote the different translocations. There are several objections for using a, b, c, etc. to denote the different translocations. When more than 26 different translocitions involving the seme two chronosomes are found we should be foreed to use biliteral subscripts, such as $a \varepsilon$, $a b, a c$, etc. The letters of the alphabet heve in the past been used for symbolizing genes. For example, we have designated the different virescents as V_{1}, V_{2}, V_{3}, etc., und not $\operatorname{sis} \underline{V}_{2}, \underline{V}_{b}, \underline{V}_{c}$, etc.
7. The symbol Df (italicized) shall bo used for Deficiency. For example, the first deficioncy involving chronosome 10 will be represented as Df 101 ; the second as $\mathrm{Df}_{f} 102$, etc.
8. The symbol In (italicized) shall stand for Inversion. in inversion involving chromosome 4 will be represented as In ${ }^{4} 1$; the second one as In ${ }^{4} 2$, etc.
9. It was decided that there vas, as yet, no need to formulate a system of nomenclature for duplications.

This office will do all that it cain to enable you to secure any of the stocks listed in this letter but it should be remembered that in several cases the amount of seed is small and we may not be able to fill your request.

> Sincerely yours,
> mn. M. Dlhoadee
> M. M. Rhoades

MMR:B

ENCLOSURES

Linkage group 1

1. P br $\mathrm{f}_{1} \quad b m_{2}$
2. $\mathrm{pbr} \mathrm{f}_{1} \mathrm{bm}_{2}$
3. $\frac{\mathrm{P}}{\mathrm{f}}$ br $\mathrm{f}_{1} \mathrm{bm}_{2}$
4. P an bm_{2}
5. $p a d_{1} b m_{2}$
6. $\mathrm{P}_{\mathrm{g}}^{10} \mathrm{f}_{1}$
7. p br $f_{1} a d_{1}$ *
8. p br $a d_{1}$ *
9. f_{1} an may seg. bm_{2} *
10. $p f_{1} \mathrm{bm}_{2}$ *
11. $\mathrm{ts}_{2} \mathrm{f}_{1}$ may seg. bm_{2} *
12. t_{2} an may seg. $f_{1} \mathrm{bm}_{2} *$
13. $\frac{\mathrm{p}++\mathrm{an} \mathrm{bm}_{2}}{\mathrm{Pbr} \mathrm{f}_{1}+\mathrm{bm}_{2}} \mathrm{~F}_{2}$
14. $\frac{\mathrm{p} \text { br } \mathrm{f}_{1} \mathrm{ad}_{1}+}{\mathrm{pbr}_{1}+\mathrm{fm}_{2}} \mathrm{~F}_{2}$
15. $\frac{\mathrm{Pbr} \mathrm{f}_{1} a n+}{\mathrm{Pbr}_{1}+\mathrm{f}_{1}} \mathrm{~F}_{2}$
16. $\frac{\mathrm{p}++++\mathrm{bm}_{2}}{\mathrm{ts}_{2} \text { br } \mathrm{f}_{1} \text { an }+} \mathrm{F}_{2}$
17. $\frac{\mathrm{Pg} l_{10} \mathrm{f}_{1} \text { an }}{\mathrm{p}+\mathrm{an}} \mathrm{F}_{2}$
18. $\frac{\mathrm{pbr} f_{1}+a n}{\mathrm{pbr}_{1} \mathrm{ad}_{1}+\mathrm{F}_{2}}$
19. $\frac{\mathrm{pts}_{2} b r f_{1}+a n}{p+b r f_{1} a d_{1}+} F_{2}$ 20. P sr

000000

Linkage group 2

1. $\lg _{1} g l_{2}{ }^{b} v_{4}$
2. $\mathrm{gl}_{2} \mathrm{x}$ sk F_{2}
3. $\lg _{1} \mathrm{gl}_{2} \mathrm{~b}_{4}$ seg. ts_{1} *
4. $\mathrm{gl}_{2} \mathrm{v}_{4}$ seg. ts_{1} *
5. $\mathrm{fl} \mathrm{v}_{4}$ *
6. $\lg _{1} \quad B \quad v_{4}$
7. $\lg _{1} \quad$ b v_{4}
8. $\lg _{1} \mathrm{~B}$ ba ${ }_{2}$ seg.
9. $\lg _{1} b \mathrm{ba}_{2}$ seg.

$$
\begin{aligned}
& \text { 10. } \mathrm{gl}_{2} \mathrm{fl} \mathrm{v}_{4} * \\
& \text { 11. } \mathrm{gl}_{2} \mathrm{fl} \\
& \text { 12. } \lg _{1} \mathrm{v}_{4} \text { seg. } \mathrm{ts} \mathrm{I}_{1} * \\
& \text { 13. } \lg _{1} \text { b sk } \mathrm{v}_{4} \\
& \text { 14. B sk } \\
& \text { 15. } \lg _{1} \text { B seg. } \mathrm{ts}_{1}
\end{aligned}
$$

1. $a_{1}-n a-t s_{4}$
2. $a_{1}-$ ts $_{4}$
3. $\frac{\text { án }_{1} n a+}{+ \text { cr }}$
4. $\frac{a_{1}+d_{1} c r}{t R g+}$
5. a_{1}-na-cr
6. $\mathrm{a}_{1}-\mathrm{na-ts}_{4}$
7. $\frac{\mathrm{cr}+}{+\mathrm{pg}_{2}} \mathrm{~F}_{2}$ *
8. $\frac{\mathrm{a}_{1} \mathrm{ts}_{4}+}{t \mathrm{cr}} \mathrm{F}_{2} \%$
9. $\mathrm{a}_{1}-\mathrm{na}-\mathrm{ts}_{4}-\mathrm{cr} *$
10. a? $d_{1}-c r$
11. $\lg _{2}-\mathrm{d}_{1}$

12. $\mathrm{a}_{1}-\mathrm{cr} *$
13. $3_{1}-\mathrm{Rg}$ 兴
14. $a_{1}-\mathrm{ba}_{1}$
15. $\mathrm{cr}_{1}-\mathrm{ms}_{3}$
16. $\mathrm{pg}_{2}-\mathrm{d}_{1}$ seg.
17. $\frac{\mathrm{ats}_{4}+}{t+\mathrm{ba} 1} F_{2}$
18. $a_{1} d_{2}$

000000

Linkage group 4

1. su Tu gl_{3}
2. su gl_{3}
3. su Tu
4. $\mathrm{su} \mathrm{Ts} 5_{5}$
5. $\frac{\mathrm{suTs} \mathrm{Ts}_{5}+}{++\mathrm{W}_{2}} \mathrm{~F}_{2}$
6. $\frac{\text { su } T u+}{++w L} F_{2}$
7. $\frac{\operatorname{sug} I_{3}+}{++w_{1}} \mathrm{~F}_{2}$
8. $\frac{s u T u+}{t+j_{2}} F_{2}$

$$
\begin{aligned}
& \text { 9. } \frac{\text { su } \mathrm{Ts}_{5}+}{+} \mathrm{F}_{2} \\
& \text { 10. su } \mathrm{j}_{2} \\
& \text { 11. Su } j_{2} \\
& \text { 12. su st } \% \\
& \text { 13. su Tu Ts } \\
& \text { 14. } \mathrm{F}_{2} \text { seg. su and } \mathrm{vp}_{3} \\
& \text { 15. su la } \% \\
& \text { 16. Tu la } \% \\
& \text { 17. } \frac{\text { su }+}{+10} \\
& \text { 19. } \frac{\text { su sp }}{+\quad+}
\end{aligned}
$$

Linkage group 5

1. $\mathrm{pr} \mathrm{v}_{\mathrm{L}}$
2. $\mathrm{pr} \mathrm{v}_{3}$
3. $\mathrm{v}_{2} \mathrm{pr} \mathrm{bm}_{1}$
4. $\mathrm{pr} \mathrm{bm}_{1}$
5. $\mathrm{ys}_{1} \mathrm{pr}$ bt
6. $\mathrm{a}_{2}-\mathrm{bt}{ }_{1}-\mathrm{pr}$
7. $\mathrm{v}_{2} \mathrm{ys}_{1} \mathrm{pr}$ *
8. $\mathrm{pr} \mathrm{bv} \mathrm{bm}_{1}$ *
9. $\mathrm{v}_{2} \mathrm{pr}$ bv *

000000

Linkage group $6^{\text {X }}$

1. y PI py
2. Y Pl py
3. y pl py
4. y PI py
5. po y P1 \%
6. po Y PI *
7. po y pl *
8. sm Py py (2) *
9. $b t_{1} \mathrm{bm}_{1}$ *
10. $\mathrm{ys}_{1} \mathrm{pr} \mathrm{bm}_{1}$ *
11. $\mathrm{ys}_{1} \mathrm{pr} \mathrm{bm}_{1} \operatorname{seg} . \mathrm{v}_{2}$ *
12. pr $\mathrm{v}_{12} \mathrm{br}_{1}$ *
13. pr $\mathrm{v}_{3} \mathrm{bm}_{1}$ *
14. ys pr v_{3} *
15. $\mathrm{v}_{2}-\mathrm{bv}$

$$
\text { 17. } \mathrm{pr} \mathrm{v}_{12}
$$

1. y PI py	9. Y Bh Pl
2. Y Pl py	10. y pl sm
3. y pl py	11. y -si-pl seg.
4. y P1 py	12. $v_{7}-\mathrm{y}-\mathrm{pl}$
5. po y P1 \%	13. $\mathrm{v}_{\mathrm{r}}-\mathrm{Y}-\mathrm{pl}$
6. po Y Pl *	14. $\mathrm{v}_{6}-\mathrm{Y}-\mathrm{pl}$
7. po y pl *	15. $\mathrm{v}_{6}-\mathrm{Y}_{\mathrm{Y}} \mathrm{f}-\mathrm{pl}$
8. sm Py py (2)*	

${ }^{x}$ Stocks carrying al are not listed since there is considerable doubt that al belongs in this linkege group.

1. $\mathrm{bn} \mathrm{gl}_{1} \mathrm{v}_{5}$
2. $B n_{1} \mathrm{gl}_{1} \mathrm{v}_{5}$
3. $g l_{1} i j$ seg. $f r_{1}$ and fr_{2}
4. $\mathrm{ra}-\mathrm{g} 1_{1}-\mathrm{v}_{5}$
5. ra v_{5}
6. $\mathrm{Bn} \mathrm{El}_{1} \mathrm{ra}$ *
7. $\frac{+\mathrm{ra}+}{\mathrm{g} I_{1}+i j} \mathrm{~F}_{2} *$
8. $W h \mathrm{gl}_{1}$
9. ra si
10. $\mathrm{Bn} \mathrm{g1} 1_{1}$ sl may seg. ra
11. bn gl_{1} sl
12. $\mathrm{gl}_{1} \mathrm{~V}_{5} \mathrm{Va}_{1}$ *
13. in $\mathrm{gl}_{1} \mathrm{~V}_{5}$ seg.
14. in ij
15. in gl_{1}
16. $g 1_{1}{ }^{\text {ij }}$
17. gl_{1} si ra

000000

Linkage group 8

1. $\frac{j+}{+\operatorname{lis}_{8}} F_{2}$

000000

Linkoge Group 9

1. yg $_{2}{ }^{c}$ sh $w x$
2. g_{4} sh or
3. c $\operatorname{sh} \mathrm{wX}^{\mathrm{V}_{1}}$
4. c sh $\mathrm{v}_{15} \mathrm{wx}$
5. ARC wx homozygous terminal knob on 9 *
1上. $2 u_{1} a u_{2}$
6. c sh wx d_{3} seg.
7. yg_{2} sh d_{3} seg.
8. $\operatorname{sh} I_{6}$
9. $\operatorname{sh}-\mathrm{wX}^{-w_{11}} F_{2}$
10. $\frac{C \operatorname{sh} W x A u_{1}}{C \operatorname{sh} W x a u_{1}} F_{2}$
11. $d a_{1}{a u_{1}}^{a u_{2}}$ sh
12. c sh wX w_{11} seg.
13. da $a u_{1}$ sh
14. I sh
15. $\mathrm{sh} \mathrm{ins}_{2}$

000000

Linkage Group 10

1. $r g_{1}$
2. $r g_{1} n l_{1}$
3. $R g_{1} n l_{1}$
4. $\mathrm{Rr} \mathrm{g}_{1}$
5. E_{1} ii
6. $I_{2} r g_{1}$ seg.

$$
\begin{aligned}
& \text { 7. } \mathrm{pg}_{1} g_{1} r \text { seg. } \\
& \text { 8. } \mathrm{pg}_{1} I_{2} \text { seg. } \\
& \text { 9. } g_{I} I_{4} \text { seg. } \\
& \text { 10. } \mathrm{d}_{7} r g_{1} \text { seg. } \\
& \text { 11. r tester stock which does } \\
& \text { not carry the inhibitor of } \\
& \text { the mottling allelomorph. } \\
& \text { I\&. } g_{1}-r \text { mottled }
\end{aligned}
$$

$A_{1} C-\operatorname{sh}-W X \quad r-g$ Pr
${ }^{2}$ I $\mathrm{C}-\mathrm{sh}-\mathrm{wx}$ r-g pr
${ }^{H} 1 \mathrm{C}-\mathrm{sh}-\mathrm{wx} \mathrm{Ri-g} \mathrm{Pr}$
${ }^{1}$ I C-sh-wx R-g pr
1.1 C-sh-w $\mathrm{Fi}-\mathrm{g}-\mathrm{nl} \mathrm{Pr}$
${ }^{H} 1 \quad B-1 g \quad Y-P 1 \quad s u-T u$
${ }_{1} \quad 3-1 g \quad Y-P I \quad$ Su-Tu
${ }^{\mathrm{A}} 1 \quad \mathrm{~B}-1 \mathrm{~g} \quad \mathrm{y}-\mathrm{Pl} \quad \mathrm{Su}-\mathrm{Tu}$
${ }^{5} 1 \quad B-1 g \quad y-P 1 \quad$ su-Tu
$\frac{\mathrm{h}_{1} \mathrm{~B}-1 \mathrm{ig}}{\mathrm{I}_{1}++\mathrm{y}-\mathrm{Pl} 1} \frac{\mathrm{su}-\mathrm{Tu}-+}{\text { su-t- }+\mathrm{I}_{3}} \mathrm{~F}_{1}$
$B B-L_{g}$ lg Su-tu Yy-Pl pl wx *
$\mathrm{Bb}-18$ Su su-tu Yy-pl pl vix *
BB-Lg Ig su-Tu tu Yy-pl ix wz * $B b-L g \quad l g$ su-Tu tu $Y y-p l$ V.x wr * $b-L g$ lg su-tu $y-p l$ wx $\%$
a. pr in wx y C Rg Su su
$a_{1} B P 1 C R \operatorname{Pr} Y$
${ }^{A} I^{-c r} C R^{g}$ pr su $y-p l \quad b-1 \& ~ j$
$\varepsilon_{1} B-1 g$ Y-PI Pr CR
${ }^{{ }_{1}^{\prime}} \mathrm{B}-1_{5} \quad y-\mathrm{p} 1$ Pr CRS
HI B Y-PI Pr C R Su
${ }^{H_{1}} 1^{-c r}$ C? $\quad r^{r}-g$ pr in-Bn bn any seg. ts ${ }_{2} \mathrm{~d}_{1} j$
ACc R^{*} pr In in Su su $y-p l$ $b-I_{g} \quad \mathrm{bm}_{2}$ j $v ?$ may $s \in g$. $3_{1} d_{1}$ er t_{2}
${ }^{\text {A }} \mathrm{R} P \quad \mathrm{c}-\mathrm{Sh} \operatorname{sh}-w x$ pr in su $y \mathrm{PVV}$
$a_{1} r^{r} C \quad B-16 \quad Y-p l \quad$ pr $\quad j$
${ }^{a}$ I R C lg y pr j in Su
$a_{i} R$ c-wX Bb-1g Y-pI pr su
$a_{I} R \quad c-s h-W x \quad B-I g \quad Y y-P l$ Pr su
$a_{1} \mathrm{Fg} C \mathrm{pr} Y$ in b pl $\%$

pr $\quad{ }^{G} I_{1}-V_{5}$
pr $1 g$ in
$\mathrm{Ig}_{\mathrm{g}} \mathrm{I}_{1}-\mathrm{V}_{5}$
pr $\quad \mathrm{in}_{\mathrm{n}} \mathrm{gl}_{1}$
pr in-ij
$\mathrm{pr}_{\mathrm{bm}}^{1}$ an $\%$
pr $f_{1}-(B r \quad b r)-\left(B m_{Z} \quad b m_{2}\right) *$
pr $1 \mathrm{G}-\mathrm{g} 1_{2}-\mathrm{b} \mathrm{F}_{2}$ *
pr ts_{4} *
pr $a_{1}-$ ne-ts $_{4}$ CR *
pr-bm_ su Tu tu *
$\mathrm{pr}_{\mathrm{bm}}^{1}$ y $\%$
pr $\mathrm{E}_{1}-\mathrm{ra}$ 首
$p r-b m{ }_{1} \mathrm{sh}-W \mathrm{x}$ \#
$\mathrm{pr}_{\mathrm{b}} \mathrm{mm}_{1} \mathrm{WX} *$
$\mathrm{pr}-\mathrm{bm}_{1}$ sh-wx su \%
$\mathrm{pr}_{\mathrm{b}} \mathrm{bm}_{1}-\mathrm{v}_{3}$ wx F_{2} *
$\mathrm{bm}_{1}-\mathrm{yg} \mathrm{I}_{1}$ wx \because
A R c-sh-wx $\mathrm{pr}_{\mathrm{or}}^{1}-\mathrm{Vm}_{2}$ *
A $\mathrm{R} C-\operatorname{sh}-w \mathrm{X}-\mathrm{v}_{1}$ pr \because
$1 g-g l_{2}-b$ wx $F_{2} *$
$\mathrm{a}_{1}-\mathrm{ts}_{1} \quad 1 \mathrm{~g} \quad \mathrm{~g} l_{2} \quad \mathrm{~F}_{2}$ *
$a_{1}-n a-t s_{4} \quad C-R \quad B \quad P I \quad F_{2} *$
bm_{2} cr $\%$
brag $_{\text {g }} \lg _{1} g_{1}$ *
Ch j su
$\begin{array}{lll}s u-g l_{3} & l_{1}-v_{4}\end{array}$
a_{1} BPI c-sh-wx pr su-gi 3^{*}
${ }^{a_{1}}$ B PI c-sh-wx P^{v} su-Tu *
ACR pr $l_{g_{1}} g_{1}$ Su y Bn
br-li seg. bd (branched silkiess)
$g_{1}-1 i \quad w x$ seg. bd.
or li gi
ra $g_{1}-l i \quad l g$
ABPI li $\quad l_{g_{1}} f_{1}$
$\begin{array}{lll}l g_{1} & g_{1} & f_{1}\end{array}$
$l_{1} \quad a d-f_{1}$
$\begin{array}{llll}r_{1} & g_{1} & l_{g} & \mathrm{br}\end{array}$
$\begin{array}{lll}\mathrm{wx} & 1 g_{1} & \mathrm{~g} l_{1}\end{array}$
or $\begin{array}{lll}\mathrm{ra}_{1} & f_{1}\end{array}$
$a_{1} r C$ pr wx y Bn? *
$a_{1} C r$ pr wx y Bn?
$a_{1} C R^{g}$ pr in y w. Su su
AC rg sh wx y pr Su su
a. CR $R^{g} \mathrm{pr} \mathrm{Y}$ pl in b
A.CR pr su Tu tu El_{3}
${ }^{a_{1}} \mathrm{P}$ sh-wx su $l \mathrm{~g}-\mathrm{b} \mathrm{f}_{1}$
$a_{1} p$ sh-wx Su $\lg -b \quad f_{1}$

ACR pr-brly wx may seg. v_{2}
A. CR $1 \mathrm{~g}-\mathrm{B}-\mathrm{v}_{4}$ pr bv $\mathrm{Yy}-\mathrm{pl} \mathrm{F}_{2}$

A C r j Y
a_{1}-na-cr $\quad \mathrm{P}-\mathrm{pl} \quad \mathrm{El}_{1}-\mathrm{V}_{5}$
$a_{1}-n a-c r \quad ¥-p l \quad b-1 g \quad E l_{1}-v_{5}$
$a_{1}-\mathrm{na} \quad b-1 g \quad Y-p l$
$a_{1}-$ no-cr $\quad b-1 g \quad Y-p l$
$a_{1}-\mathrm{Na} \cdot \mathrm{na}-\mathrm{Ts}_{4} \mathrm{ts}_{4} \quad \mathrm{~b}-\mathrm{lg} \quad \mathrm{g}_{1}$
$a_{1}-n a \quad b-1 g \quad Y-p l \quad g l_{1}-v_{5}$
ACR Pr $\mathrm{gl}_{1}-\mathrm{ra}$ *
f. CR SO ${ }_{1} \mathrm{SO}_{2}$
A.a $R r-g_{1} \quad B \quad P 1$ su
\#2 trisome
\#3 "
\#5 "
*6
\#7 "
\#8
$\neq 9$ -
\#10 "
A C (Rr)? Pr (Bb)? pl Yy \quad tetraploid
A C rg b pl y Su tetraploid
$a_{1} C R$ pr y Su
$A_{I} \subset R$ Pr y Su
${ }_{i 1}$ C r pr y su*
$\mathrm{A}_{1} \mathrm{CR}$ pr y
${ }^{h_{1}} C$ R pr sh
$\begin{array}{lllll}H_{1} & B & p l & 1 g_{1} & y\end{array}$
$A_{1} \subset R$ sh $w x$ bl y
Three inbred strains of Lecming selfed for 29 yoars. *
Strain resistant to physiological forms 1 and 3 of Puccinia sorghi. Strain susceptible to physiological forins 1 and 3 of P. sorghi. Strain resistant to physiological form 1 but susceptible to physiological form 3 of P. sorghi.

List of reciprocal translocations at Cal. Tech.
Pedigree
No.
h 11
A 12
A. 13

A 14
A. 15
A. 16
\& 17
A 18
h. 19

A 20
A. 21

A 22
A. 23
h 24
A 25
A 26
A 27

- 28

ค 29
A 30
$\therefore 31$
A 32
A 33
A 35
A 36
A 37
A 38
A 40
h 41
A. 42
h 43

Chromosones involved

1-7
1-3
4- 9
4- 5
3-10
8-10
2-7
3-10
2-3
5-10
5-8
8-10
6-10
1-5
2-7
3-10
3-7
3- 5
1-2
3- 6
3-9
1- 5
2- 6
1- 9
4- 6
4- 6
3-- 8
1- 5
2-6
2- 4
1-9

$\begin{gathered} \text { Pedigrec } \\ \text { No. } \end{gathered}$	Chronosomes involvod
A. 52	3- 5
1. 58	1-3
c. 61	4-10
1. 62	8-10
i. 64	1-10
H. 66	4-5
A. 69	2-7
- 70	4-6
- 73	1-7
1. 74 A 75 a	1-3
A. 76	2-5
\& 77	1-9
- 78	2-8
-79	4-9
i. 80	2-6
i. 83	8-9
h 84	8-10
A 85	$4-10$
A 87	1-3
A. 88	2-4
1. 90	2-3
1. 94	9-10
h101	2-4
- 103	1-7
. 111	6-8
hil8	2-3
\&.119	6-9
4.122	1-4
-129	2-4
L.133	3-10
A136	$5-7$
i:137	4-7
C \& is 125	3-6
1. \& C 6452	5-6
A \& C 6460	2-9
is \& C 6462	4-5
A \& C 6465	3-9
is \& C 6466	1-10
i. \& C 6467	4-8
h \& C 6468	3-5
A. \& C 6470	6-9
is \& C 3471	2-6
1. \& C 6472	4-5
A \& C 6475	2-10
H \& C 6474	3-7
f. \& C 6475	5-7
i. \& C 6477	3-8

