8. Spontaneous Trisomes for Knob-10 Chromosome.

Six triplo-10 plants were found among 11,424 seedlings carrying the heterozygous knob 10 chromosome (designated, K 10). In 33,599 plants homozygous for the knobless 10 chromosome (designated, k 10), the trisomes were absent. These six cases originated in g R g K/G r r k and G R g k/g r r K cultures which were tested for the possibility of crossing-over between the seed and plant color elements of the R r locus (J. L. Hahn, unpublished). The trisomes were phenotypically R r and thus were detected as presumed cross-over types. When the six R r plants were backcrossed by an r g tester stock, the expected ratio of 1 R r /r g : 1 r g /r g was not obtained but instead four classes were recovered, R r , R g , r r and r g . Cytological examination showed that each of the six R r plants was trisomic for chromosome 10.

Since the trisomic frequency was high in the heterozygous K 10 cultures, it was suspected that the frequency might be greatly increased in the homozygous K 10 progeny. Among 806 seedlings examined from the cross of G R^g K/g r^r K X g r^g k/g r^g k, 10 R^r plants were found one of which died in the seedling stage and one gave a poor cytological specimen. The following cytological alterations for chromosome 10 were found so far in the eight remaining R^r plants:

			Tris			
Total No.			From Root	From		
sdgs.	No. of Rr	Isochromosomes	Tips	Pachytene	Died	Cyto.
806	10	2	2	4	1	1

A possible mechanism to account for the unexpectedly high frequency of trisomes in the presence of knob-10 is failure of terminalization of a chiasma at meiosis. It is noteworthy that three of the six trisomes from the heterozygous knob-10 series indicated crossing-over between R and G, the G locus being 14 units from R. In the homozygous knob-10 series, four of the eight R^r plants were crossovers for G. This does not exclude the possibility that crossing-over did not occur in the other cases since the stocks were not marked for the detection of crossovers proximal to G.