IV. REPORT ON MAIZE COOPERATIVE

Extensive collections of Maize Cooperative genetic stocks have been grown for the past two summers at Urbana. The primary emphasis thus far has been on collecting and preserving valuable genetic traits and on increasing the seed supplies. Since many of the stocks are quite weak as a result of prolonged inbreeding and are in some cases poorly adapted to much of the corn belt, an effort was made in the summer of 1953 to cross all stocks to the inbred lines M14, W23, and Oh51A. It is planned that the stocks will be converted eventually to these lines. During the past summer, F_2 's from many of these crosses were obtained. With some of the multiple gene stocks, especially, it has been necessary to make various supplementary types of crosses to maintain supplies and to increase the vigor of the stocks until they can be extracted from crosses to the inbreds and their genetic constitutions can be confirmed. Many of the F_1 's from crosses of unplaced genes to chromosome rearrangements marked with closely-linked endosperm or seedling traits were selfed this past summer. Those F_2 's segregating for unplaced endosperm or seedling traits are being checked for linkages this winter.

During the past year about two dozen additional stocks have been added to the collection. We are especially anxious to receive additional chromosome tester stocks, multiple dominants, and multiple recessives, particularly those which have been selected for vigor. We would also appreciate obtaining stocks of new traits or more favorable combinations of traits already in the collection.

Requests for stocks should be sent to the Botany Department, University of Illinois, Urbana, Illinois. The available Cooperation stocks are as follows:

Chromosome 1 stocks

as bm_2 ; probably seg v_{19} Hm Kn lw₁ MS_{17} P^{rr} ad₁ bm₂ P^{rr} an₁ bm₂; seg br₁, ad₁ P^{rr} bm₂; seg ad₁ Seg P^{rr} br₁ an₁ gs₁ bm₂ (in coupling) P^{VV} P^{wr} gs₁ bm₂ P^{wr} bm₂ $P^{ww} br_1 f_1 bm_2$ P^{ww} ; may seq ts₂, bm₂ P^{ww} ; may seg ts₂, bm₂ P^{ww}; may seg ts₂, bm₂ P^{ww} ; may seg zb_4 , br_1 P^{ww} ; seq zb_4 ts₂

sr $P^{\scriptscriptstyle Wr}$ an_1 $bm_{\scriptscriptstyle 2}$ may seg ts₂ P^{ww} br₁ Ts_6 Vg vp₅ $zb_4 ms_{17} P^{ww}$ $zb_4 P^{ww} bm_2$ may seg zb₄, P^{ww}, br₁, bm₂ zb_4 ts₂ P^{wr} Chromosome 2 stocks al lg_1 ba₂ fl₁ lg_1 ; seg al, gl_2 lg_1 ; seg al, gl_2 , v_4 $lg_1 gl_2$; seg ws₃ B lg₁ gl₂ b; seg ws₃ $lg_1 gl_2 b$; seg ws₃, fl₁, v₄ $lg_1 gl_2 b fl_1 v_4$ $lg_1 gl_2 B sk v_4$ seg $lg_1 gl_2 b sk v_4$ (in coupling) $lg_1 gl_2 b v_4$ $lg_1 gl_2 b v_4 Ch;$ may seg sk Chromosome 3 stocks a_1 et; A_2 A_3 C R; seg Dt $a_1 sh_2$; $A_2 A_3 C R dt$ a_1 sh_2; A_2 A_3 C R; seg Dt A^{d} -31; A_{2} A_{3} C R A^d -31 Sh₂; A₂ A₃ C R; seg Dt **a**1 sh₂ A^d-31 ; A₂ A₃ C R a_{x-1} a^p et; $A_2 A_3 C R$; may seg Dt a^p Sh₂ (et) ; A₂ A₃ C R; carries Dt $a_1 sh_2 Et$ ____; $A_2 A_3 C R$; may carry Dt a^p (et) a_{x-1} (Et) a_{x-1} -- ; $A_2 A_3 C R$; seg Dt a_1 sh₂ $cr_1 ts_4 na_1$ d_1 d_1 ; seg Lg_3 d₁; seg Lg₃, Rg (in repulsion) d₁; seg Rg $d_1 ts_4 lg_2$ d₂ **g**₂ gl₆

 $gl_6 lg_2 a_1$ et; seg Dt (C, R not homozygous) $gl_6 v_{17}$ gl_7 $lg_2 a_1 et; A_2 A_3 C R Dt$ $lg_2 a_1 sh_2 et; A_2 A_3 C R$ $lg_2 A^b$ et; $A_2 A_3 C R$ Lg₃ seg Lg₃, R ms₃ pg₂ pm ra₂ ra₂ lg₂; seg pm Rg rt sh₂ $ts_4 na_1$ vp₁ Chromosome 4 stocks bm₃ bt_2 de(1 or 16?) $Ga_1 Su_1$ ga₁ su₁ gl₃ la su₁ gl₃ lo lw_4 ; lw_3 **O**₁ sp₁ Lo su₁ Sp_1 lo Su_1 $sp_1 Su_1$ $Sp_1 Su_1$ st Su_1^{am} $Su_1 bm_3$ su₁ gl₃ su₁ gl₄ $su_1 Tu gl_3$ su zb₆ seg su₁, zb_6 , Tu, gl(3) Ts_5 Tu gl₃ V_8 Chromosome 5 stocks $a_2 bm_1 bt_1 bv_1 pr; A_1 A_3 C R$... $a_2 bm_1 pr v_2$; ... a_2 bt₁ pr;

... a_2 bt₁ pr; ; seg bm₁, bv₁; may seg ys₁ ... a₂ pr; $A_1 A_2 A_3 C R$ bm₁ pr; bm₁ pr; seg ys₁ $bm_1 yg_1$ seg bm₁, ys₁ seg bm_1 , $ys_1 v_2$ bt₁ Ga Bt₁ ga bt₁ gl_5 gl_8 lw_2 $1W_{3}; 1W_{4}$ ms_{18} $A_1 A_2 A_3 C R$ pr; ; seg bm_1 , v_2 ; probably seg ys_1 pr; " ; seg "sh₃", bm₁, ys₁, intensifier linked to pr; "sh₃" " pr; ; seg vp₂ " pr; ; seg ys₁ "sh₃" (allele of bt_1) "sh₃" pr; $A_1 A_2 A_3 C R$; seg intensifier linked to " sh_3 "; carries ys_1 "Sh₃" pr; tn v_3 pr; A_1 A_2 A_3 C R V₁₂ seg vp_2 , gl_8 (in repulsion) seg vp₂, pr (in repulsion); $A_1 A_2 A_3 C R$ seg vp₇ ys₁; seg bm₁ ys₁; seg "sh₃", intensifier linked to "sh₃", bm₁, pr; A₁A₂A₃ CR Chromosome 6 stocks seg Pl, sm, may seg py (all in coupling); $A_1 A_2$ b, seg P^{rr} po seg Y at si (all in coupling) y, seg Pl, seg Bh; c sh₁ wx $A_1 A_2 A_3 R b$ Y, seg Pl, may seg py; $A_1 A_2 b P^{rr}$ Y, seg Pl sm py (in coupling); $A_1 A_2 b$, seg P^{rr} y; seg w₁ y; seg w_1 , luteus on chromosome 6; carries P^{rr} $Y L_{10}$ pl; $A_1 A_2 b$ y l₁₀ y ms (1?) Y Pl; $A_1 A_2 b P^{rr}$ y Pl, seg luteus on chromosome 6; $A_1 A_2 b$ Y pl, seg w₁ y Pl, seg w_1 ; $A_1 A_2 b P^{rr}$ y pl, seg w_1 ; seg yellow seedling (luteus?); $A_1 A_2 b$ y Pl, seg w_1 ; seg yellow seedling (luteus?); $A_1 A_2 b P^{rr}$

y Pl; seg w_1 , luteus on chromosome 6; $A_1 A_2 b$ y su₂ $Y v_7$ y Pl Bh; A₁ A₂ B sh₁ wx $y pg_{11}pl; A_1 A_2 wx pg_{12}$ y Pl (py); seg a luteus; $A_1 A_2$ b; carries P^{rr} Y Pl sm, may seg py; $A_1 A_2 b$; seg P^{rr} y Pl (sm), may seg py; $A_1 A_2 b P^{rr}$ Y Pl sm py; $A_1 A_2 b$; carries P^{rr} Chromosome 7 stocks (Bn) gl₁; y $A_1 A_2 A_3 C R pr$ gl₁; Y wx A₁ A₂ A₃ C R Pr seg gl₁ sl (Bn) Hs **0**₂ $o_2 ra_1 gl_1$ $o_2 v_5 ra_1 gl_1$ $o_2 v_5 ra_1 gl_1$; seg Hs $ra_1 gl_1$ Tp₁ va₁ vp₉ gl₁; wx Chromosome 8 stocks v_{16} j_1 , seg ms₈; l_1 Chromosome 9 stocks $au_1 au_2$ bk₂ c; seg wx, bk_2 ; $A_1 A_2 A_3 R$ c wx; y $A_1 A_2 A_3 R b Pl$ $c sh_1 wx, y A_1 A_2 A_3 R b, seg Pl$ c sh₁ wx gl₄ (Coop) $A_1 A_2 A_3 R$ c sh₁ wx gl^H; $A_1 A_2 A_3 R$ da₁; seg sa, ms₂, wx; may seg ar Dt_1 (See chromosome 3 stocks) gl₁₀ (Coop) gl₁₀ (Sprague) I wx; $A_1 A_2 A_3 R Pr B pl$ I wx; $A_1 A_2 A_3 R pr B pl$ 17 ms_2 ms_{20} $sh_1 l_7$ $sh_1 ms_2$ sh_1 wx d_3 seg sh₁, d_3 , l_6

 $sh_1 wx pg_{12}$; $y A_1 A_2 B pl pg_{11}$ Wc; seg bk₂, may carry ms₂₀ Wc; may seg bk₂, ms₂₀ Wc; carries ms₂₀, may carry bk₂ wxa wx da₁ (C, R may segregate); seg ar, sa; may seg ms_2 WX g_4 wx l_6 wx pg_{12} ; y A_1 A_2 B pl pg_{11} wx v_1 ; seg sh₁ Chromosome 10 stocks $a_3 g_1 R$; $A_1 A_2 C$ du₁ g_1 $g_1 r^g$; $A_1 A_2 A_3 C$ gl₉ (Coop) $l_1; v_{16} ms_8 j_1$ li g_1 R; A_1 A_2 A_3 c ... li g_1 r; " li g_1 r; ; may carry abnormal 10 na₂ $nl_1 g_1 R; A_1 A_2 A_3 C$ Og R; A₁ A₂ A₃ C B Pl; may carry B chromosomes R^{mb} ; $A_1 A_2 A_3 C$ R^{nj}: Rst; " V₁₈ W_2 zn Stocks of unplaced genes an_2 at

 bk_1 bk_2 bm₄ "bm₄" Singleton cl de₁₇ du₂ dv dy fl_2 gl_{11} gl_{12} gl₁₃ gl₁₄ gl_{15} gl_{16}

glg h mn ms_5 ms_6 MS_7 ms₉ MS_{10} ms_{11} MS_{12} MS_{13} MS_{14} mottled aleurone new starchy gene pb₄ "ra₃" Perry Rs_1 rs_2 " sh_4 " Singleton "sh₅" Singleton Ts₃ tW_1 tW_2 V₁₃ V₁₇ vp₆ $WS_1 WS_2$ zb₁ zb₂ zb₃

Multiple gene stocks

 $A_1 A_2 A_3 C R Pr$ (") Pr wx (") Pr wx y (") Pr wx Y gl₁ (") pr (") pr wx ") prwxy ((") Pr su₁ (") Pr B Pl; seg Og; may carry B Chromosomes $A_1 \ A_2 \ A_3 \ c \ R \ Pr \ su_1$ (") y wx (") y sh₁ wx $A_1 A_2 A_3 C r Pr su_1$ (") su₁ y g₁ (") y wx (") y sh₁ wx wx $lg_1 gl_2 b v_4$ $y su_1 ra_1 gl_1$ y wx gl₁

<u>Combinations of endosperm genes</u>

The combinations of genes affecting synthesis of endosperm starch listed in last year's News Letter are still available in our collection. However, Dr. Kramer, who is still working actively with this material in deriving now combinations and increasing vigor, has offered to supply improved stocks of these combinations to interested investigators, Requests should be addressed to Dr. Herbert H. Kramer, Agronomy Department, Purdue University, Lafayette, Indiana.

Stocks useful in studies of Ga factors

Hulless South American Ohio Yellow Black Beauty Red Amber Pearl Supergold

Exoties and varieties

Black Mexican Sweet Corn (without B chromosomes) Black Mexican Sweet Corn (with B chromosomes) Gourdseed Maize chapolote Papago Flour Corn Parker's Flint Tama Flint Zapaluta chica

Stocks of primary trisomics

Stocks are available which will segregate for trisomics 3, 4, 5, 6, 7, 8, and 9. These stocks have been crossed once or twice by the inbred line W23. Thus far, trisomics 1, 2, and 10 have not appeared in the small number of plants examined.

<u>Reciprocal translocations marked with closely-linked genes for endosperm or</u> <u>seedling traits</u>

A selected series of chromosome translocations, whose breakpoints mark most of the regions of the ten chromosomes, is being maintained. The majority of the translocations are closely linked to wx, with the remainder linked to su_1 , y or gl_2 . The stocks are in general quite vigorous. In most cases, F_1 's with M14, W23, and Oh51A are available, and in a few instances F_2 's have been obtained. The list of translocations is as follows: wx 1-9 c wx 1-9 4995-5 wx 2-9 b wx 3-9 c wx 3-9 5775-1 wx 4-9 b wx 4-9 5657-2 wx 4-9 g wx 5-9 a wx 5-9 c wx 5-9 4817-7 wx 5-9 5614-3 wx 6-9 a wx 6-9 b wx 6-9 4505-4 wx 8-9 d wx 8-9 6673-6 wx 9-10 b gl₁, wx 7-9 4363-1 su 1-4 a su 1-4 d su 4-5 j su 4-8 a su 4-6a у, у 1-6 с gl₂ 2-3 a gl₂ 2-3 5304-3

Earl B. Patterson